New building block in plant wall construction

August 18, 2020

University of Adelaide researchers as part of a multidisciplinary, international team, have uncovered a new biochemical mechanism fundamental to plant life.

The research, published in The Plant Journal details the discovery of the enzymatic reaction involving carbohydrates present in plant cell walls, which are essential for their structure.

Project leader, Professor Maria Hrmova, said the discovery contributes to important knowledge about how plant cell walls could be formed, structured and re-modelled.

"Plant cell walls perform a number of essential functions, including providing shape to the many different cell types needed to form the tissues and organs of a plant, intercellular communication, and they play a role in plant-microbe interactions, including defence responses against potential pathogens," Professor Hrmova said.

Earlier research into the chemistry and function of the xyloglucan carbohydrates in plants had found that xyloglucan xyloglucosyl transferase enzymes are one of the key accelerants in the re-modelling of cell walls.

It has only been through the development of the methodology used in this study, recombinant technology - which makes it possible to isolate proteins in a pure state - and the availability of defined carbohydrates, that it has been possible to observe the enzymatic reaction which occurs between the xyloglucan and pectin carbohydrates.

"When we were able to closely observe the substrate specificity of barley xyloglucan xyloglucosyl transferases, we discovered a chemical reaction, which results in the production of a hetero-polysaccharide (a carbohydrate composed of chemically distinct components). We could also examine these reactions at the molecular levels to define how these enzymes precisely work," Professor Hrmova said.

"It is one thing to be able to identify the different components of cell walls in plants, but that is not enough, we need to understand how they are formed and what they do, and this method of isolating pure proteins so they can be examined, allowed us to do just that," Professor Hrmova said.

"This discovery is a new building block in our understanding of how the cell wall could be constructed."

"Once you understand how something is made, you can then look at constructing or de-constructing it in different ways," Professor Hrmova said.

"That is why fundamental knowledge on how these enzymes function is so valuable."

The findings could have far-reaching implications for the sustainability of plant-based industries such as agriculture, horticulture, forestry for biofuels production and food and materials processing.

To date the team have characterised four out of 36 xyloglucan xyloglucosyl transferases in barley, so there is still many more to examine, which could lead to further discoveries. Once this work has been completed for barley, the methodology could be applied to examining the cell walls of other crops such as wheat and rice.

"Plants are the world's largest renewable resource - plants feed the world and they also produce energy in the form of biofuels," Professor Hrmova said.

The knowledge could allow for the bioengineering of similar proteins involved in plant cell wall re-modelling to create higher quality foods and to learn how to de-construct plant cell walls to obtain biofuels.
-end-
The international collaboration also included researchers from Denmark (University of Copenhagen), Slovak Republic (Centre for Glycomics, Bratislava) and China (Huaiyin Normal University).

University of Adelaide

Related Biofuels Articles from Brightsurf:

Making biofuels cheaper by putting plants to work
One strategy to make biofuels more competitive is to make plants do some of the work themselves.

How to make it easier to turn plant waste into biofuels
Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels.

Barriers and opportunities in renewable biofuels production
Researchers at Chalmers University of Technology, Sweden, have identified two main challenges for renewable biofuel production from cheap sources.

How biofuels from plant fibers could combat global warming
A study from Colorado State University finds new promise for biofuels produced from switchgrass, a non-edible native grass that grows in many parts of North America.

Calculating the CO2 emissions of biofuels is not enough
A new EU regulation aims to shrink the environmental footprint of biofuels starting in 2021.

Algae cultivation technique could advance biofuels
Washington State University researchers have developed a way to grow algae more efficiently -- in days instead of weeks -- and make the algae more viable for several industries, including biofuels.

Cutting the cost of ethanol, other biofuels and gasoline
Biofuels like the ethanol in US gasoline could get cheaper thanks to experts at Rutgers University-New Brunswick and Michigan State University.

Cellulosic biofuels can benefit the environment if managed correctly
Could cellulosic biofuels -- or liquid energy derived from grasses and wood -- become a green fuel of the future, providing an environmentally sustainable way of meeting energy needs?

Making oil from algae -- towards more efficient biofuels
The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team.

WSU study finds people willing to pay more for new biofuels
When it comes to second generation biofuels, Washington State University research shows that consumers are willing to pay a premium of approximately 11 percent over conventional fuel.

Read More: Biofuels News and Biofuels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.