Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids

August 18, 2020

Current modalities for imaging living tissues and 3D cell cultures are invasive, slow or lacking in spatial resolution. Dynamic full-field optical coherence tomography (D-FFOCT) is a label-free, non-invasive, quantitative technique allying high spatial and temporal resolutions. This technique relies on low coherence interferometry to amplify the phase and amplitude fluctuations, created by moving scattering structures inside biological samples, yielding a motility contrast. D-FFOCT opens up the possibility of following the development of complex 3D multicellular structures, such as retinal organoids.

In a new paper by Jules Scholler, Kassandra Groux, et al., published in Light: Science & Applications, a team of optics experts (Institut Langevin, Paris, France) led by Dr Kate Grieve from the Quinze-Vingts National Eye Hospital (Paris, France), in collaboration with cell biologists (Institut de la Vision, Paris, France), have developed and applied a new imaging modality for the imaging of in-development retinal organoids.

These scientists summarize the operational principle of their microscope:

"We use the interferometric amplification of a full field optical coherence tomography device and study the fluctuation of the interferometric signal to quantitatively construct tomographic volumes with a metabolic contrast. Owing to our high sensitivity, we are able to reconstruct highly contrasted images of almost transparent samples without using any exogenous labels."

"Owing to the full field configuration and the high sensitivity, our method is faster and requires much lower illumination intensity than nonlinear microscopy techniques that can damage the sample irreversibly. This allows us to study the development of the same sample over periods of several weeks" they added.

"D-FFOCT will have many potential applications for in vitro living tissue including disease modeling, cancer screening, and drug screening" the scientists forecast.
-end-


Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Imaging Articles from Brightsurf:

X-ray imaging of atomic nuclei
Optically imaging atomic nuclei is a long-sought goal for scientific and applied research, but it has never been realized so far.

Seeing the invisible -- A novel gas imaging system
Researchers from Tokyo Medical and Dental University developed a novel device to image and quantify volatile gases that are released through the skin in real-time.

4D imaging with liquid crystal microlenses
Most images captured by a camera lens are flat and two dimensional.

Protein imaging at the speed of life
A team of physicists from the University of Wisconsin-Milwaukee have completed the first molecular movie of the ultrafast movement of proteins at the European XFEL facility.

Use of medical imaging
This observational study looked at patterns of use for computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and nuclear medicine imaging in the United States and in Ontario, Canada, from 2000 to 2016.

Two-in-one contrast agent for medical imaging
Magnetic resonance imaging (MRI) visualizes internal body structures, often with the help of contrast agents to enhance sensitivity.

Medical imaging rates during pregnancy
Researchers looked at rates of medical imaging (CT, MRI, conventional x-rays, angiography, fluoroscopy and nuclear medicine) during pregnancy in this observational study that included nearly 3.5 million pregnant women in the United States and Canada from 1996 to 2016.

Quality improvement in cardiovascular imaging
In the current issue of Cardiovascular Innovations and Applications volume 4, issue 1, pp.

Making digital tissue imaging better
A low-tech problem troubles the high-tech world of digital pathology imaging: There are no reliable standards for the quality of digitized tissue slides comprising the source material for computers reading and analyzing vast numbers of images.

Diattenuation imaging -- a promising imaging technique for brain research
A new imaging method provides structural information about brain tissue that was previously difficult to access.

Read More: Imaging News and Imaging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.