Nav: Home

Artificial materials for more efficient electronics

August 18, 2020

We are surrounded by electronic devices. Transistors are used to power telephones, computers, televisions, hi-fi systems and game consoles as well as cars, airplanes and the like. Today's silicon-based electronics, however, consume a substantial and ever-increasing share of the world's energy. A number of researchers are exploring the properties of materials that are more complex than silicon but that show promise for the electronic devices of tomorrow - and that are less electricity-hungry. In keeping with this approach, scientists from the University of Geneva (UNIGE) have been working in collaboration with the Swiss Federal Institute of Technology in Lausanne (EPFL), the University of Zurich, the Flatiron Institute of New York and the University of Liège. The scientists have discovered a hitherto-unknown physical phenomenon in an artificial material made up of very thin layers of nickelates. This could be exploited to accurately control some of the material's electronic properties, such as the sudden transition from a conductive to an insulating state. It could also be used to develop new, more energy-efficient devices. You can read about this technological advance in the journal Nature Materials.

"Nickelates are known for a special characteristic: they suddenly switch from an insulating state to that of an electrical conductor when their temperature rises above a certain threshold," begins Jean-Marc Triscone, a professor in the Department of Quantum Matter Physics in UNIGE's Faculty of Science. "This transition temperature varies according to the composition of the material."

Nickelates are formed from a nickel oxide with the addition of an atom belonging to so-called «rare earth» elements (i.e. a set of 17 elements from the Periodic Table). When this rare earth is samarium (Sm), for example, the metal-insulator jump takes place at around 130°C, while if it is neodymium (Nd), the threshold drops to -73°C. This difference is explained by the fact that when Sm is replaced by Nd, the compound's crystal structure is deformed - and it is this deformation that controls the value of the transition temperature.

In their attempt to learn more about these materials, the Geneva-based scientists studied samples made up of repeated layers of samarium nickelate deposited on layers of neodymium nickelate - a kind of «super sandwich» where all the atoms are perfectly arranged.

Behaving like a single material

Claribel Domínguez, a researcher in the Department of Quantum Matter Physics and the article's first author, explains: "When the layers are quite thick, they behave independently, with each one keeping its own transition temperature. Oddly enough, when we refined the layers until each one was no larger than eight atoms, the entire sample began behaving like a single material, with only one large jump in conductivity at an intermediate transition temperature."

A very detailed analysis performed by electron microscope at EPFL - backed up by sophisticated theoretical developments undertaken by American and Belgian colleagues - showed that the propagation of the deformations in the crystal structure at the interfaces between the materials only takes place in two or three atomic layers. Accordingly, it is not this distortion that explains the observed phenomenon. In reality, it is as though the furthest layers somehow know that they are very close to the interface but without being physically deformed.

It's not magic

"There's nothing magical about it," says Jennifer Fowlie, a researcher in the Department of Quantum Matter Physics and co-author of the article. "Our study shows that maintaining an interface between a conductive region and an insulating region, as is the case in our samples, is very expensive in terms of energy. So, when the two layers are thin enough, they are able to adopt much less energy-intensive behaviour, which consists of becoming a single material, either totally metallic or totally insulating, and with a common transition temperature. And all this happens without the crystal structure being changed. This effect, or coupling, is unprecedented."

This discovery was made possible thanks to the support provided by the Swiss National Science Foundation and the Q-MAC ERC Synergy Grant (Frontiers in Quantum Materials' Control). It provides a new way of controlling the properties of artificial electronic structures, which, in this instance, is the jump in conductivity obtained by the Geneva researchers in their composite nickelate, which represents an important step forward for developing new electronic devices. Nickelates could be used in applications such as piezoelectric transistors (reacting to pressure).

More generally, the Geneva work fits into a strategy for producing artificial materials "by design", i.e. with properties that meet a specific need. This path, which is being followed by many researchers around the world, holds promise for future energy-efficient electronics.
-end-


Université de Genève

Related Crystal Structure Articles:

Photonic crystal light converter
Spectroscopy is the use of light to analyze physical objects and biological samples.
Crystal structure discovered almost 200 years ago could hold key to solar cell revolution
Solar energy researchers are shining their scientific spotlight on materials with a crystal structure discovered nearly two centuries ago.
Crystal wars
Scientists at The University of Tokyo and Fudan University researched the process of crystallization in which competing structural forms coexist.
Melting a crystal topologically
Physicists at EPFL have successfully melted a very thin crystal of magnetic quasi-particles controllably, as turning ice into water.
The makings of a crystal flipper
Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions.
Crystal power
Scientists at the US Department of Energy's Argonne National Laboratory have created and tested a single-crystal electrode that promises to yield pivotal discoveries for advanced batteries under development worldwide.
Pressing 'pause' on nature's crystal symmetry
From snowflakes to quartz, nature's crystalline structures form with a reliable, systemic symmetry.
Superhard candy -- scientists cracked the complex crystal structure of molybdenum borides
In their search for new superhard compounds, researchers carried out a prediction of stable molybdenum borides and their crystal structures.
Machine learning technique speeds up crystal structure determination
A computer-based method could make it less labor-intensive to determine the crystal structures of various materials and molecules, including alloys, proteins and pharmaceuticals.
An improved method for protein crystal structure visualization
During crystallization atoms are arranged in a 3D lattice structured in a specific way.
More Crystal Structure News and Crystal Structure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.