Nav: Home

Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators

August 18, 2020

X-ray imaging has been actively utilized in the fields of industrial material inspection, medical diagnosis and scientific research. The key component to detect X-ray is the scintillator which can convert X-ray photons to visible photons and then be detected by a photodiode array. Despite of decades of intensive research of scintillators, the performances of conventional scintillators are still far from ideal. While the emerging lead halide perovskite starts to show very promising characters, there are still several unpleasant factors such as strong self-absorption, relatively low light yield and lead toxicity that limit their practical application.

In a new paper published in Light Science & Application, a team of researchers, led by Professor Yang Yang from State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, China, and co-workers have developed a nontoxic Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 double perovskite scintillator, which exhibits not only a high light yield but also long-term stability under continuous thermal treatment and X-ray irradiation. Given the high light output and fast light decay of this scintillator, static X-ray imaging was attained under an extremely low dose of ~1 μGyair, and dynamic X-ray imaging of finger bending without a ghosting effect was demonstrated under a low dose rate of 47.2 μGyair s-1. These results reveal the huge potential in exploring scintillators beyond lead halide perovskites, not only for avoiding toxic elements but also for achieving higher performance.

Scintillators are capable of converting X-ray photons into visible photons. The plausible mechanism of X-ray scintillation can be described as follows: The radiation energy is first absorbed by the heavy atoms of the scintillators mainly through the photoelectric effect and inelastic Compton scattering, ejecting massive hot electrons; then, these electrons thermalize on an ultrafast timescale and are captured by luminescent centres. These scientists summarize the design principles of scintillator:

"We design the scintillator according to the following three principles:(1) Introduce heavy atom (Bi3+) to improve X-ray absorption efficiency; (2) Weaken self-absorption and improve photoluminescence quantum yield to optimize light out; (3) Reduce afterglow and shorten light decay time to increase the signal-to-noise ratio (SNR) of X-ray imaging."

"The realization of high-resolution X-ray image under an extreme low X-ray dose demonstrate that the X-ray dose requirement for medical X-ray imaging can be significantly reduced in the future." They added.

"The presented scintillators can be used in X-ray computed tomography (CT) and dynamic X-ray imaging, which is important to understand many biological processes and is also useful for online monitoring of industrial process." The scientists forecast.
-end-


Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Lead Articles:

Silicones may lead to cell death
Silicone molecules from breast implants can initiate processes in human cells that lead to cell death.
Poor diet can lead to blindness
An extreme case of 'fussy' or 'picky' eating caused a young patient's blindness, according to a new case report published today [2 Sep 2019] in Annals of Internal Medicine.
What's more powerful, word-of-mouth or following someone else's lead?
Researchers from the University of Pittsburgh, UCLA and the University of Texas published new research in the INFORMS journal Marketing Science, that reveals the power of word-of-mouth in social learning, even when compared to the power of following the example of someone we trust or admire.
UTI discovery may lead to new treatments
Sufferers of recurring urinary tract infections (UTIs) could expect more effective treatments thanks to University of Queensland-led research.
Increasing frailty may lead to death
A new study published in Age and Ageing indicates that frail patients in any age group are more likely to die than those who are not frail.
Discovery could lead to munitions that go further, much faster
Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.
Shorter sleep can lead to dehydration
Adults who sleep just six hours per night -- as opposed to eight -- may have a higher chance of being dehydrated, according to a study by Penn State.
For the brokenhearted, grief can lead to death
Grief can cause inflammation that can kill, according to new research from Rice University.
Lead or follow: What sets leaders apart?
Leaders are more willing to take responsibility for making decisions that affect the welfare of others.
Taking the lead toward witchweed control
A compound that binds to and inhibits a crucial receptor protein offers a new route for controlling a parasitic plant.
More Lead News and Lead Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.