Insect wings inspire new ways to fight superbugs

August 18, 2020

Scientists have revealed how nanomaterials inspired by insect wings are able to destroy bacteria on contact.

The wings of cicadas and dragonflies are natural bacteria killers, a phenomenon that has spurred researchers searching for ways to defeat drug-resistant superbugs.

New anti-bacterial surfaces are being developed, featuring different nanopatterns that mimic the deadly action of insect wings, but scientists are only beginning to unravel the mysteries of how they work.

In a review published in Nature Reviews Microbiology, researchers have detailed exactly how these patterns destroy bacteria - stretching, slicing or tearing them apart.

Watch and embed the video

Lead author, RMIT University's Distinguished Professor Elena Ivanova, said finding non-chemical ways of killing bacteria was critical, with more than 700,000 people dying each year due to drug-resistant bacterial infection.

"Bacterial resistance to antibiotics is one of the greatest threats to global health and routine treatment of infection is becoming increasingly difficult," Ivanova said.

"When we look to nature for ideas, we find insects have evolved highly effective anti-bacterial systems.

"If we can understand exactly how insect-inspired nanopatterns kill bacteria, we can be more precise in engineering these shapes to improve their effectiveness against infections.

"Our ultimate goal is to develop low-cost and scaleable anti-bacterial surfaces for use in implants and in hospitals, to deliver powerful new weapons in the fight against deadly superbugs."

Bacteria-killing surfaces

The wings of cicadas and dragonflies are covered in tiny nanopillars, which were the first nanopatterns developed by scientists aiming to imitate their bactericidal effects.

Since then, they've also precisely engineered other nanoshapes like sheets and wires, all designed to physically damage bacteria cells.

Bacteria that land on these nanostructures find themselves pulled, stretched or sliced apart, rupturing the bacterial cell membrane and eventually killing them.

The new review for the first time categorises the different ways these surface nanopatterns deliver the necessary mechanical forces to burst the cell membrane.

"Our synthetic biomimetic nanostructures vary substantially in their anti-bacterial performance and it's not always clear why," Ivanova said.

"We have also struggled to work out the optimal shape and dimensions of a particular nanopattern, to maximise its lethal power.

"While the synthetic surfaces we've been developing take nature to the next level, even looking at dragonflies, for example, we see that different species have wings that are better at killing some bacteria than others.

"When we examine the wings at the nanoscale, we see differences in the density, height and diameter of the nanopillars that cover the surfaces of these wings, so we know that getting the nanostructures right is key."

Ivanova said producing nanostructured surfaces in large volumes cost-effectively, so they could be used in medical or industrial applications, remained a challenge.

But recent advancements in nanofabrication technologies have shown promise for opening a new era of biomedical antimicrobial nanotechnology, she said.
-end-
A pioneer in biomimetic antibacterial surfaces, Distinguished Professor Elena Ivanova leads the Mechano-bactericidal Surfaces research group in the School of Science at RMIT.

Her research is supported with funding from the Australian Research Council Industrial Transformation Research Hubs and Industrial Transformation Training Centre schemes, and the CASS Foundation.

'Mechano-bactericidal actions of nanostructured surfaces', with RMIT co-authors Dr Denver Linklater and Professor Russell Crawford as well as co-authors from the Universitat Rovira I Virgili, The Ohio State University, University of Southampton and Swinburne University of Technology is published in Nature Review Microbiology (DOI: 10.1038/s41579-020-0414-z).

RMIT University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.