Nav: Home

Ageing heart cells offer clues to susceptibility of older people to severe COVID-19

August 18, 2020

Genes that play an important role in allowing SARS-CoV-2 to invade heart cells become more active with age, according to research published today in the Journal of Molecular and Cellular Cardiology. The findings could help explain why age is major risk factor for dying from COVID-19, with people over 70 years at greatest risk, and why the disease can cause heart complications in severe cases, including heart failure and inflammation of the heart.

"When this novel coronavirus first emerged, we expected it to be primarily a respiratory illness, as the virus usually takes hold first in the lungs," said Professor Anthony Davenport from the Department of Medicine. "But as the pandemic has progressed, we've seen more and more COVID-19 patients - particularly older patients - affected by heart problems. This suggests that the virus is capable of invading and damaging heart cells and that something changes as we age to make this possible."

Professor Davenport led an international team of researchers from the University of Cambridge, Maastricht University, KU Leuven and Karolinska Institute to investigate the link between COVID-19 and heart failure. The researchers examined cells known as cardiomyocytes to see how susceptible they were to infection by the coronavirus. Cardiomyocytes make up the heart muscle and are able to contract and relax, enabling the heart to pump blood around the body. Damage to these cells can affect the ability of the heart muscles to perform, leading to heart failure

To cause damage, the virus must first enter the cell. SARS-CoV-2 is a coronavirus - spherical in shape with 'spike' proteins on its surface, which it uses to gain entry. The spike protein binds to ACE2, a protein receptor found on the surface of certain cells. The virus is also able to hijack other proteins and enzymes, including TMPRSS2 and Cathepsins B and L to gain entry.

The researchers compared cardiomyocytes from five young (19-25 year old) males and five older (63-78 year old) males and found that the genes that give the body instructions to make these proteins were all significantly more active in cardiomyocytes from the older males. This suggests that there is likely to be an increase in the corresponding proteins in aged cardiomyocytes.

"As we age, the cells of our heart muscles produce more of the proteins needed by the coronavirus to break into our cells," said Dr Emma Robinson from Maastricht University and KU Leuven. "This makes these cells more vulnerable to damage by the virus and could be one reason why age is a major risk factor in patients infected with SARS-CoV-2."

Some of the proteins encoded by the genes can be inhibited by existing medicines. For example, the anti-inflammatory drug camostat inhibits TMPRSS2 and has been shown to block SARS-CoV-2 entry in cells grown in the laboratory. The study also suggests new targets for medicines that could be developed such as compounds blocking binding of the virus to ACE2 that may be beneficial in protecting the heart.

"The more we learn about the virus and its ability to hijack our cells, the better placed we are to block it, either with existing drugs or by developing new treatments," said Professor Davenport.
-end-
The study was funded by grants including from Wellcome, the British Heart Foundation and Dutch Heart Foundation.

Reference

Robinson, EL et al. Genes Encoding ACE2, TMPRSS2 and Related Proteins Mediating SARS-CoV-2 Viral Entry are Upregulated with Age in Human Cardiomyocytes. Journal of Molecular and Cellular Cardiology; 18 Aug 2020: DOI: 10.1016/j.yjmcc.2020.08.009

University of Cambridge

Related Heart Failure Articles:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication
Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.
Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.
Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population
Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.
Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.
Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.
Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.
How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.
Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.
More Heart Failure News and Heart Failure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.