Constructing odor objects in the brain

August 18, 2020

A research team led by Hokto Kazama at the RIKEN Center for Brain Science (CBS) in Japan has combined brain imaging and models of brain activity to explain how smells can be generalized into categories. The team examined a region of the fly brain that plays a central role in forming olfactory memories and discovered clustered representations of mixtures and groups of odors that are conserved across individual flies. This study, published in Neuron, explains how varying odors are perceived similarly in different individuals.

Recognition and generalization are essential processes that we often take for granted. Whether it's recognizing a person's accent or being able to categorize a never-before seen combination of foods as a type of pizza, somehow our brains do all the hard work in the background. In the case of smell, animals use their sense of smell to recognize food sources, predators, potential mates, and family. An odor is generally a mixture of multiple volatile molecules, yet animals do not recognize each molecule one by one, but rather the entire mixture as a single smell. Consider the citrus odor. Even though oranges, lemons, grapefruits, and yuzu all have different compositions of odor molecules, they can all be recognized as smelling "citrusy".

To date, how the brain generates representations of unitary odor objects has not been well understood. Luckily, the ability to recognize and generalize odors can be accomplished by the common fruit fly, which has a very well mapped out olfactory system with a set number of neurons. The CBS research team focused on this system, particularly on the differences between two brain regions in the sensory pathway.

In the fly brain, odor information travels from the primary olfactory center, called the antennal lobe, to the secondary center, called the mushroom body. For their experiment to work, the team needed to simultaneously measure responses from many more neurons than has been done in the past. "Characterizing the activity of all 2,000 cells of the mushroom body at once was the biggest technical hurdle," explains Kazama. "Previous studies have only recorded from less than 5% of them, which was not enough for our purposes." They overcame this problem by developing an algorithm that automatically locates and tracks all the cells over an hour of recording.

They presented flies with 15 different odors individually as well as in mixtures and recorded neuronal responses by imaging the calcium released when the neurons were active. They found that clusters of neurons in the mushroom bodies responded selectively to individual odors, mixtures, or groups of odors. In contrast, neurons in the antennal lobe responded much less selectively. This tells that the mushroom bodies integrate input from the antennal lobe in some way and create distinct odor representations.

By using a mathematical model of neural information processing, the team was able to reproduce the results obtained from the real fly brains. Furthermore, they discovered that neural expressions of unitary odors in the mushroom bodies were similar among different individual flies, which can explain why odors are similarly recognized in different individuals. "The most surprising finding was that the same computation in the olfactory circuit can generate unitary representations for individual odors as well as groups and mixtures of odors," says Kazama.

"Because the basic wiring pattern of the olfactory circuit is highly conserved across phyla, we believe that the type of computations we have discovered here may also be found in other more complex animals, such as humans," Kazama says. "We are curious to know if these odor object representations remain stable or flexibly change over time as animals experience various odors in their environment."


Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to