Nav: Home

Why doesn't Ebola cause disease in bats, as it does in people?

August 18, 2020

GALVESTON, Texas - A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people. This study is now available in Cell Reports.

The Ebola virus causes a devastating, often fatal, infectious disease in people. Within the past decade, Ebola has caused two large and difficult to control outbreaks, one of which recently ended in the Democratic Republic of the Congo.

When a virus brings serious disease to people, it means that humans are not good hosts for the virus. Viruses depend on a living host for their survival and have natural reservoirs - a hosting animal species in which a virus naturally lives and reproduces without causing disease. Bats are likely a natural reservoir for the Ebola virus, but little is known about how the virus evolves in bats.

Like most other RNA viruses, Ebola's molecules are structured in a way that makes them more prone to genomic errors and mutations than other types of viruses. Because of this, Ebola and similar viruses have a remarkable ability to adapt to and replicate in new environments.

In the study, the research team, led by Alex Bukreyev, a UTMB virologist in the departments of pathology and microbiology and immunology, working with the team of Raul Andino, University of California, San Francisco, investigated how the Ebola virus adapts to both bat and human cells. They assessed changes in mutation rates and the structure of Ebola virus populations repeatedly in both bat and human cell lines using an ultra-deep genetic sequencing.

"We identified a number of meaningful differences in how the Ebola virus evolves when placed in a human cell line relative to a bat cell line," Bukreyev said. "For instance, the RNA editing enzyme called ADAR within bat cells play a greater role in the replication and evolution of the Ebola virus than do such enzymes in human cells. We found that the envelope protein of Ebola virus undergoes a drastic increase in certain mutations within bat cells, but this was not found in human cells. This study identifies a novel mechanism by which Ebola virus is likely to evolve in bats."

The study suggests that the Ebola virus and bats can live together harmoniously because of the bat cell's ability to induce changes in the virus that make it less capable of harm. Bukreyev said that the study's findings validate the ultra-deep genetic sequencing used in this study as a predictive tool that can identify viral mutations associated with more adaptive evolution. This technology can be very useful in studying, and perhaps shaping, the evolution of emerging viruses, like SARS-CoV-2, the virus responsible for COVID-19.
-end-
Other authors include UTMB's Abhishek Prasad, Adam Ronk, Ivan Kuzmin, and Philipp Ilinykh as well as Zachary Whitfield from The University of California, San Francisco.

University of Texas Medical Branch at Galveston

Related Evolution Articles:

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.
Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.
How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.