OCT-based technique captures subtle details of photoreceptor function

August 18, 2020

WASHINGTON -- Researchers have developed a new instrument that has, for the first time, measured tiny light-evoked deformations in individual rods and cones in a living human eye. The new approach could one day improve detection of retinal diseases such as age-related macular degeneration, a leading cause of blindness in people over 55 worldwide.

"Our instrument offers a unique way to study retinal disease at the cellular level," said research team leader Ravi Jonnal from the University of California Davis (UC Davis) Eye Center. "Because existing methods for measuring dysfunction are much less sensitive, it offers a potential new way to detect disease."

In The Optical Society (OSA) journal Optics Letters, Jonnal and colleagues describe their new instrument, which is based on optical coherence tomography (OCT). Using the new approach, they were able to measure how individual rods and cones respond to light, and could detect deformations that were significantly smaller than the wavelength of the imaging light source.

The work is part of an emerging international field of research that aims to develop methods to fully capture the function of the retinal neural circuit of living people.

Combining imaging methods

Vision begins when rod and cone photoreceptors in the eye's retina detect light and initiate signals through a process called phototransduction. Retinal diseases such as age-related macular degeneration and retinitis pigmentosa cause vision loss by interfering with the function of rods and cones.

Because rods are thought to be more sensitive to the impacts of these diseases, changes in their function could provide an early indicator of disease or its progression. However, the small size of rods makes it difficult to image them, much less measure how well they are functioning.

In the new work, the researchers developed a unique high-speed OCT system capable of detecting slight swelling in the outer segments of the photoreceptors that occurs as a side effect of phototransduction. The system accomplishes this by capturing specialized OCT images simultaneously with scanning light ophthalmoscope images, enabling it to pinpoint the location and type of photoreceptors captured in a series of hundreds of 3D OCT images.

"Although imaging the swelling of rods and cones can reveal the dynamics of their response to light, until recently, it was not known if these changes could be measured in vivo in the human eye," said Mehdi Azimipour, first author of the paper. "This is because the size of the photoreceptors and the scale of the light-evoked deformations were well below the resolutions provided by retinal imaging systems."

Imaging high-speed dynamics

Recently, full-field OCT has been used to visualize the light-evoked deformation of larger peripheral cones. The OCT system developed by the researchers from UC Davis offers better confocality, which improves image quality by rejecting more scattered light and suppressing associated noise. Because the light-evoked deformation of photoreceptors can be very fast, the new system incorporates a high-speed Fourier-domain mode-locked laser that enables fast imaging and can scan 16 times faster than commercially available lasers used for swept source OCT.

To capture the highest resolution images possible, the researchers incorporated adaptive optics technology that measure the eye's aberrations and corrects them in real time. Even with adaptive optics, rod photoreceptors are too small to be imaged due to the system's 1-micron-wavelength light source. To overcome this problem, the researchers added a scanning light ophthalmoscope imaging channel that uses a wavelength that is less than 1 micron to increase the imaging resolution. This allowed differentiation of rods and cones in co-registered OCT images.

The researchers used their new instrument to measure the deformations of rods and cones in response to light of varying intensity in living human eyes. The responses of the cells increased as the light intensity increased until saturation occurred, consistent with phototransduction.

Because the new instrument produces large quantities of data (3.2GB/s) over even a small field of view, software needs to be developed to allow scanning of larger areas of retina and automatic data processing. This would make the system more practical for clinical use.

The researchers are now planning to use the instrument to measure photoreceptor light responses of patients with retinal diseases to see if new insights can be gained. "We hope to be involved in using the system to test novel therapies for blinding diseases, to speed up the process of bringing those therapeutics to the clinic," said Azimipour.
Paper: M. Azimipour, D. Valente, K. V. Vienola, J. S. Werner, R. J. Zawadzki, R. S. Jonnal," Optoretinogram: optical measurement of human cone and rod photoreceptor responses to light," Opt. Lett., 45,17,4658-4661(2020).

DOI: https://doi.org/10.1364/OL.398868.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Miguel Alonso, Institut Fresnel, École Centrale de Marseille and Aix-Marseille Université, France, University of Rochester, USA. Optics Letters is available online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact: mediarelations@osa.org

The Optical Society

Related Photoreceptors Articles from Brightsurf:

Research provides a new understanding of how a model insect species sees color
Through an effort to characterize the color receptors in the eyes of the fruit fly Drosophila melanogaster, University of Minnesota researchers discovered the spectrum of light it can see deviates significantly from what was previously recorded.

Scientists use gene therapy and a novel light-sensing protein to restore vision in mice
A newly developed light-sensing protein called the MCO1 opsin restores vision in blind mice when attached to retina bipolar cells using gene therapy.

Seeing the eye like never before
In a big step for ophthalmology, scientists created a method to view the inner workings of the eye and its diseases at the cellular level.

Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).

Researchers develop cell injection technique that could help reverse vision loss
University of Toronto Engineering researchers have developed a new method of injecting healthy cells into damaged eyes.

Not just light: The sensitivity of photoreceptors to mechanical stimuli is unveiled
''We thought we knew almost everything about photoreceptors, but we have proved that is not the case''.

Researchers uncover a critical early step of the visual process
The key components of electrical connections between light receptors in the eye and the impact of these connections on the early steps of visual signal processing have been identified for the first time, according to research published today in Science Advances by The University of Texas Health Science Center at Houston (UTHealth).

Nanotechnology applied to medicine: The first liquid retina prosthesis
Researchers at Istituto Italiano di Tecnologia has led to the development of an artificial liquid retinal prosthesis to counteract the effects of diseases such as retinitis pigmentosa and age-related macular degeneration that cause the progressive degeneration of photoreceptors of the retina, resulting in blindness.

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

'Single pixel' vision in fish helps scientists understand how humans can spot tiny details
Recently discovered 'single-pixel vision' in fish could help researchers understand how humans are able to spot tiny details in their environment -- like stars in the sky.

Read More: Photoreceptors News and Photoreceptors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.