Scientists Discover How Influenza Virus Becomes More Deadly

August 18, 1998

Scientists supported by the National Institute of Allergy and Infectious Diseases (NIAID) have discovered why some influenza viruses are uncommonly deadly.

In a paper published in the Aug. 18 issue of the Proceedings of the National Academy of Sciences USA, they describe an unusual molecular mechanism that amplifies the disease-causing power of influenza A virus. This mechanism could be a new marker for scientists to examine when attempting to predict the potential for a newly emergent influenza A virus to cause a pandemic. Though still to be proved, their discovery may explain the longtime mystery of how the virus that caused the 1918 influenza pandemic caused more than 20 million deaths worldwide.

"Their findings point us in a direction to better understand the pathology of these more virulent influenza viruses," notes Dominick Iacuzio, Ph.D., program officer for influenza and related viral respiratory diseases at NIAID.

Influenza A viruses possess two surface proteins, hemagglutinin (HA) and neuraminidase (NA). To become infectious, the HA molecule must first be cut into two subunits that help the virus attach to human cells. Normally, influenza viruses remain confined to the respiratory tract because the protease enzymes that cleave HA are common in the lungs and trachea but not in other tissues.

Yoshihiro Kawaoka, D.V.M., Ph.D., and Hideo Goto, D.V.M., Ph.D., of the University of Wisconsin School of Veterinary Medicine in Madison, have discovered that this human influenza A virus is more virulent because it employs a more ubiquitous enzyme, plasmin, to help chop HA in two.

The scientists studied a virus descended from the strain that caused the 1918 pandemic and adapted to grow in mice. Through their experiments, they found that its NA molecule has two distinct structural features that enable it to bind and trap plasminogen, a precursor to plasmin, and thereby accelerate HA cleavage and promote widespread infection of cells.

The investigators tested 10 other human, swine and avian viruses, and found no evidence of the same mechanism at work, indicating that the ability to sequester plasminogen and thereby enhance HA cleavage was a unique property of this particularly virulent strain of human influenza A virus.

"This is a mechanism that we never knew existed in influenza viruses," says Dr. Kawaoka. "Now we have additional markers that we can look for when a peculiar outbreak of human or animal flu occurs," he adds. These two structural features of the NA molecule "should be considered when evaluating the health hazard posed by human influenza viruses," they write in their article. Any strain with an NA molecule possessing these two features, they add, "should be regarded as potentially dangerous."

Scientists have known for years that certain bacteria, such as group A streptococci, contain plasminogen-binding proteins that make it easier for these bacteria to infect tissues. But this is the first example, Dr. Kawaoka notes, of a virus that contains a plasminogen-binding protein. It is highly likely, he says, that such proteins will be found in other pathogenic viruses as well.

NIAID is a component of the National Institutes of Health (NIH). NIAID conducts and supports research to prevent, diagnose and treat illnesses such as HIV disease and other sexually transmitted diseases, tuberculosis, malaria, asthma and allergies. NIH is an agency of the U.S. Department of Health and Human Services.

References:

H Goto and Y Kawaoka. A novel mechanism for the acquisition of virulence by a human influenza A virus. Proceedings of the National Academy of Sciences USA 95:10224-28 (1998).

JK Taubenberger. Influenza virus hemagglutinin cleavage into HA1 and HA2: no laughing matter. Proceedings of the National Academy of Sciences USA 95:9713-15.


Note: Copies of the paper and the commentary can be requested directly from PNAS by calling (202) 334-2138.

Press releases, fact sheets and other NIAID-related materials are available via the NIAID Web site at http://www.niaid.nih.gov.
-end-


NIH/National Institute of Allergy and Infectious Diseases

Related Influenza Articles from Brightsurf:

Predicting influenza epidemics
Researchers at Linköping University, Sweden, have developed a unique method to predict influenza epidemics by combining several sources of data.

Common cold combats influenza
As the flu season approaches, a strained public health system may have a surprising ally -- the common cold virus.

Scent-sensing cells have a better way to fight influenza
Smell receptors that line the nose get hit by Influenza B just like other cells, but they are able to clear the infection without dying.

New antivirals for influenza and Zika
Leuven researchers have deployed synthetic amyloids to trigger protein misfolding as a strategy to combat the influenza A and Zika virus.

Assessment of deaths from COVID-19, seasonal influenza
Publicly available data were used to analyze the number of deaths from seasonal influenza deaths compared with deaths from COVID-19.

Obesity promotes virulence of influenza
Obesity promotes the virulence of the influenza virus, according to a study conducted in mice published in mBio, an open-access journal of the American Society for Microbiology.

Influenza: combating bacterial superinfection with the help of the microbiota
Frenc researchers and from Brazilian (Belo Horizonte), Scottish (Glasgow) and Danish (Copenhagen) laboratories have shown for the first time in mice that perturbation of the gut microbiota caused by the influenza virus favours secondary bacterial superinfection.

Chemists unveil the structure of an influenza B protein
MIT chemists have discovered the structure of an influenza B protein called BM2, a finding that could help researchers design drugs that block the protein and help prevent the virus from spreading.

How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.

Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.

Read More: Influenza News and Influenza Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.