Nav: Home

Watching stem cells repair the human brain

August 19, 2009

There is no known cure for neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's. But new hope, in the form of stem cells created from the patient's own bone marrow, can be found ― and literally seen ― in laboratories at Tel Aviv University.

Dr. Yoram Cohen of TAU's School of Chemistry has recently proven the viability of these innovative stem cells, called mesenchymal stem cells, using in-vivo MRI. Dr. Cohen has been able to track their progress within the brain, and initial studies indicate they can identify unhealthy or damaged tissues, migrate to them, and potentially repair or halt cell degeneration. His findings have been reported in the journal Stem Cells.

"By monitoring the motion of these cells, you get information about how viable they are, and how they can benefit the tissue," he explains. "We have been able to prove that these stem cells travel within the brain, and only travel where they are needed. They read the chemical signalling of the tissue, which indicate areas of stress. And then they go and try to repair the situation."

Tracking live cells in the brain

To test the capabilities of this innovative new stem cells, Dr. Cohen created a study to track the activity of the live cells within the brain using the in-vivo MRI at the Strauss Centre for Computational Neuro-Imaging. Watching the live, active cells has been central to establishing their viability as a therapy for neurodegenerative disease.

Dr. Cohen and his team of researchers took magnetic iron oxide nanoparticles and used them to label the stem cells they tested. When injected into the brain, they could then be identified as clear black dots on an MRI picture. The stem cells were then injected into the brain of an animal that had an experimental model of Huntington's disease. These animals suffer from a similar neuropathology as the one seen in human Huntington's patients, and therefore serve as research tool for the disease.

On MRI, it was possible to watch the stem cells migrating towards the diseased area of the brain. "Cells that go toward a certain position that needs to be rescued are the best indirect proof that they are live and viable," explains Dr. Cohen. "If they can migrate towards the target, they are alive and can read chemical signalling."

An ethically viable stem cell

This study is based on differentiated mesenchymal cells (MSC), which were discovered at Tel Aviv University. Bone marrow cells are transformed into NTFs-secreting stem cells, which can then be used to treat neurodegenerative diseases. This advance circumvents the ethical debate caused by the use of stem cells obtained from embryos.

Although there is a drawback to using this particular type of stem cell ― the higher degree of difficulty involved in rendering them "neuron-like" ― the benefits are numerous. "Bone marrow-derived MSCs bypass ethical and production complications," says Dr. Cohen, "and in the long run, the cells are less likely to be rejected because they come from the patients themselves. This means you don't need immunosuppressant therapy."

Working towards a real-life therapy

Dr. Cohen says the next step is to develop a real-life therapy for those suffering from neurodegenerative diseases. The ultimate goal is to repair neuronal cells and tissues. Stem cell therapy is thought to be the most promising future therapy to combat diseases such as Huntington's, Alzheimer's and Parkinson's diseases, and researchers may also be able to develop a therapy for stroke victims. If post-stroke cell degeneration can be stopped at an early stage, says Dr. Cohen, patients can live for many years with a good quality of life.
-end-
In collaboration with Dr. Cohen, this work on tracking live stem cells in the brain was done by Noam Shemesh, a Ph.D. candidate in the School of Chemistry at Tel Aviv University, and Dr. Ofer Sadan from the group of Drs. Daniel Offen and Eldad Melamed from the Felsenstein Medical Research Center at the Rabin Medical Center.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading and most comprehensive center of higher learning. In independent rankings, TAU's innovations and discoveries are cited more often by the global scientific community than all but 20 other universities worldwide.

Internationally recognized for the scope and groundbreaking nature of its research programs, Tel Aviv University consistently produces work with profound implications for the future.

American Friends of Tel Aviv University

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.