Nav: Home

New reagents for genomic engineering of mouse models to understand human disease

August 19, 2009

The ability to specifically target and modify genes in the mouse allows researchers to use this small rodent to study how certain genes contribute to human disease. A common method used to make genetic changes in mice and cells is called site-specific recombination, where two DNA strands are exchanged. The two strands may contain very different sequences, but are designated at their ends by specific target sequences that are not commonly found elsewhere in the genome. A protein, called a recombinase, cuts the DNA at its target sites and rearranges it. Scientists use this technique to exchange a naturally occurring DNA sequence for an altered or deleted gene to gain insight into the gene's normal function or how it contributes to disease.

Currently there are a few systems available to create genetic mutations in mice, including the recombinases FLP and Cre. These proteins are very efficient genetic modifiers and specifically target their appropriate sequences. They can also be turned on or off at precise times, or within specific tissues, to make carefully reegulated genetic changes. However, the small number of available methods that can be used together to mutate genes limits the complexity of the modifications that can be produced. For example, it would be informative to independently regulate the temporal and tissue-specific expression of genes with overlapping functions to understand their individual and combined effects.

Scientists now report that a new recombinase, Dre, induces controlled genetic changes in mice. Dre works similarly to the currently popular recombinase Cre, with an important exception: Dre recognizes a distinct target sequence and only recombines DNA around its target sequence, even if the target sequence for Cre is present. The ability of the related proteins, Cre and Dre to distinguish their own target sequences indicates that Dre can be used in combination with Cre, and other recombinases, to produce more sophisticated mouse models. This should facilitate the analysis of complex gene interactions and how they function in disease.

This technological advance also highlights the progress that might be made through open reagent sharing within the scientific community. The discovery of Dre recombinase was originally reported by Sauer and McDermott at the Stowers Institute for Medical Research. The Institute holds an intellectual patent for the system that allows it to be shared openly for non-commercial purposes and evaluates requests on a case-by-case basis for its use by for-profit institutions. Thus, the authors of the new DMM report do not have any proprietary claims to the system that they used to create this valuable mouse model. This is the first of a series of Resource Articles that will appear in Disease Models and Mechanisms intended to promote collaboration, and the development and sharing of new tools to understand or treat human disease. These DMM articles specifically state how other researchers can access the reagents presented. More discussion about the sharing of scientific resources and collaboration is published in an editorial by the Editor-in-Chief, Vivian Siegel, in Volume 2 Issue 9/10 of DMM.
This first Resource Article titled 'Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice' was written by Konstantinos Anastassiadis at the Center for Regenerative Therapies Dresden, BioInnovationsZentrum Technische Universitaet Dresden; Jun Fu at Genomics, BioInnovationsZentrum, Technische Universitaet Dresden; Christoph Patsch at the Institute of Reconstructive Neurobiology, University of Bonn; Shengbiao Hu at Genomics, BioInnovationsZentrum, Technische Universitaet Dresden; Stefanie Weidlich at the Center for Regenerative Therapies Dresden, BioInnovationsZentrum Technische Universitaet Dresden; Kristin Duerschke at Genomics, BioInnovationsZentrum, Technische Universitaet Dresden; Frank Buchholz at the Max-Planck-Institute for Molecular Cell Biology and Genetics; Frank Edenhofer at the Institute of Reconstructive Neurobiology, University of Bonn; and A. Francis Stewart at Genomics, BioInnovationsZentrum, Technische Universitaet Dresden. The study is published in the September/October 2009 issue of the new research journal, Disease Models & Mechanisms (DMM), <>, published by The Company of Biologists, a non-profit organization based in Cambridge, UK.

About Disease Models & Mechanisms:

Disease Models & Mechanisms (DMM) is a new research journal, launched in 2008, that publishes primary scientific research, as well as review articles, editorials, and research highlights. The journal's mission is to provide a forum for clinicians and scientists to discuss basic science and clinical research related to human disease, disease detection and novel therapies. DMM is published by the Company of Biologists, a non-profit organization based in Cambridge, UK.

The Company also publishes the international biology research journals Development, Journal of Cell Science, and The Journal of Experimental Biology. In addition to financing these journals, the Company provides grants to scientific societies and supports other activities including travelling fellowships for junior scientists, workshops and conferences. The world's poorest nations receive free and unrestricted access to the Company's journals.

The Company of Biologists

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...