With muscle-building treatment, mice live longer even as tumors grow

August 19, 2010

In the vast majority of patients with advanced cancer, their muscles will gradually waste away for reasons that have never been well understood. Now, researchers reporting in the August 20 issue of Cell, a Cell Press Publication, have found some new clues and a way to reverse that process in mice. What's more, animals with cancer that received the experimental treatment lived significantly longer, even as their tumors continued to grow.

"This is the first demonstration that muscle mass plays a key role in cancer survival," said H.Q. Han of Amgen Research.

While it has long been recognized that this muscle wasting condition, known as cachexia, affects advanced cancer patients' quality of life, Han explained, its importance for survival had primarily been a matter of speculation. Nearly 30 percent of cancer-related deaths have been attributed to cachexia, but that was based on correlative evidence only. That is, there has seemed to be a connection in cancer patients between weight loss and mortality.

Still, cachexia had typically been considered a "multi-factorial" process with many causes. "That would make it hard to target," Han said. Indeed, few therapeutic options are available and efforts to treat this aspect of the disease haven't been top of mind. Given the new results, that could change.

The researchers suspected that a pathway known as ActRIIB might be involved. ActRIIB is what's known as an activin type 2 receptor. There was evidence to suggest that tumors secrete activin, such that circulating levels of the protein rise in those with cancer. Activin is closely related to another protein, called myostatin, which is known to be important in muscle. Animals lacking myostatin or taking treatments that block it grow bigger muscles. There was some evidence to suggest that activin blockers might have a similar effect.

Based on that hunch, the researchers treated mice with cancer and associated cachexia with a recombinant and soluble version of the ActRIIB receptor (sActRIIB), a kind of molecular "decoy" that potently inhibited both activin and myostatin activity. That treatment reversed the animals' muscle loss and prolonged their survival by several weeks on average. That was despite the fact that the tumors appeared to be unaffected. The animals also kept losing fat and still had high levels of inflammatory factors.

"In tumor-bearing mice with profound cachexia, blocking this pathway not only prevents muscle wasting but completely reverses the loss of muscle, strength and anorexia," Han said. (Anorexia is another symptom of cachexia, but appetite stimulants and nutritional supplements don't help much.)

The researchers also found something that had apparently gone unnoticed before. Just as the skeletal muscles of mice with cancer withered away, so too did their heart muscle. The ActRIIB inhibiting treatment completely reversed that too.

Han said that finding may point to an unappreciated role for heart atrophy in muscle wasting conditions more broadly.

Further experimentation showed that the ActRIIB blockade prevented muscle proteins from being marked for degradation and markedly stimulated muscle stem-cell growth. Muscle stem cells were successfully activated even in muscle that had lost 50 percent of its weight prior to treatment, Han said.

"This is the first indication that there may be a major medical benefit in extending life span by combating cachexia," Han said, emphasizing however that there is a long way to go from preclinical studies in mice to clinical trials in human patients.

Still, he added, "as drug discovery scientists, we are very excited by the implications. This suggests a promising strategy for treating cachexia and underscores the need for further investigation and translational research to fully understand this pathway and explore the benefits of its antagonism."

The researchers say it will be important to explore levels of myostatin and other components of the ActRIIB pathway in various patient groups. "The dramatic, reversible changes in body mass shown here emphasize the importance of obtaining such information not only for understanding disease mechanisms but also to provide a fuller rationale for anti-activin therapies," they wrote. "However, since the inhibition of ActRIIB signaling by sActRIIB induces growth of normal muscle, this treatment is likely to be anabolic and help combat muscle loss in many catabolic conditions, even if the wasting is not triggered by excessive signaling by activin or related ligands of the ActRIIB pathway."

Han says he and his colleagues hope the findings will renew interest among cancer researchers and oncologists in cachexia. "Our results argue that blocking the catabolic actions of tumors should be a major therapeutic objective, not only to enhance quality of life but also to prolong survival," he said.
-end-
The researchers include Xiaolan Zhou, Amgen Research, Thousand Oaks, CA; Jin Lin Wang, Amgen Research, Thousand Oaks, CA; John Lu, Amgen Research, Thousand Oaks, CA; Yanping Song, Amgen Research, Thousand Oaks, CA; Keith S. Kwak, Amgen Research, Thousand Oaks, CA; Qingsheng Jiao, Amgen Research, Thousand Oaks, CA; Robert Rosenfeld, Amgen Research, Thousand Oaks, CA; Qing Chen, Amgen Research, Thousand Oaks, CA; Thomas Boone, Amgen Research, Thousand Oaks, CA; W. Scott Simonet, Amgen Research, Thousand Oaks, CA; David L. Lacey, Amgen Research, Thousand Oaks, CA; Alfred L. Goldberg,2 and H.Q. Han, Amgen Research, Thousand Oaks, CA.

Cell Press

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.