Drought drives decade-long decline in plant growth

August 19, 2010

Global plant productivity that once was on the rise with warming temperatures and a lengthened growing season is now on the decline because of regional drought according to a new study of NASA satellite data.

Plant productivity is a measure of the rate of the photosynthesis process that green plants use to convert solar energy, carbon dioxide and water to sugar, oxygen and eventually plant tissue. Compared with a 6 percent increase in plant productivity during the 1980s and 1990s, the decline observed over the last decade is only 1 percent. The shift, however, could impact food security, biofuels and the global carbon cycle.

Researchers Maosheng Zhao and Steven Running of the University of Montana in Missoula discovered the global shift from an analysis of NASA satellite data. The discovery comes from an analysis of plant productivity data from the Moderate Resolution Imaging Spectroradiometer on NASA's Terra satellite, combined with other growing season climate data, including temperature, solar radiation and water.

"We see this as a bit of a surprise, and potentially significant on a policy level because previous interpretations suggested global warming might actually help plant growth around the world," Running said.

Previous research found land plant productivity was on the rise. A 2003 paper in the journal Science led by scientist Ramakrishna Nemani, now a researcher at NASA's Ames Research Center in Moffett Field, Calif., showed the 6 percent increase in global terrestrial plant productivity between 1982 and 1999. The increase was traced to nearly two decades of temperature, solar radiation and water availability conditions, influenced by climate change, that were favorable for plant growth.

Setting out to update that analysis, Zhao and Running expected to see similar results as global average temperatures continued to climb. Instead, they found the negative impact of regional drought overwhelmed the positive influence of a longer growing season, driving down global plant productivity between 2000 and 2009. The team published its findings Thursday in Science.

"This is a pretty serious warning that warmer temperatures are not going to endlessly improve plant growth," Running said.

Zhao and Running's analysis showed that since 2000, high-latitude Northern Hemisphere ecosystems have continued to benefit from warmer temperatures and a longer growing season. But that effect was offset by warming-associated drought that limited growth in the Southern Hemisphere, resulting in a net global loss of land productivity.

"This past decade's net decline in terrestrial productivity illustrates that a complex interplay between temperature, rainfall, cloudiness, and carbon dioxide, probably in combination with other factors such as nutrients and land management, will determine future patterns and trends in productivity," said Diane Wickland, program manager of the Terrestrial Ecology research program at NASA Headquarters in Washington.

Researchers want to continue monitoring these trends in the future because plant productivity is linked to shifting levels of greenhouse gas carbon dioxide in the atmosphere and stresses on plant growth that could challenge food production.

"Even if the declining trend of the past decade does not continue, managing forests and crop lands for multiple benefits to include food production, biofuel harvest, and carbon storage may become exceedingly challenging in light of the possible impacts of such decadal-scale changes," Wickland said.
-end-
For information and video about this new research, visit:

http://www.nasa.gov/topics/earth/features/plant-decline.html

http://www.nasa.gov/home/hqnews/2010/aug/HQ_10-196_Global_Plant_Decline.html

Written by:
Kathryn Hansen
NASA's Earth Science News Team

NASA/Goddard Space Flight Center

Related Drought Articles from Brightsurf:

Redefining drought in the US corn belt
As the climate trends warmer and drier, global food security increasingly hinges on crops' ability to withstand drought.

The cost of drought in Italy
Drought-induced economic losses ranged in Italy between 0.55 and 1.75 billion euros over the period 2001-2016, and droughts caused significant collateral effects not only on the agricultural sector, but also on food manufacturing industries.

Consequences of the 2018 summer drought
The drought that hit central and northern Europe in summer 2018 had serious effects on crops, forests and grasslands.

Songbirds reduce reproduction to help survive drought
New research from the University of Montana suggests tropical songbirds in both the Old and New Worlds reduce reproduction during severe droughts, and this - somewhat surprisingly -- may actually increase their survival rates.

Predicting drought in the American West just got more difficult
A new, USC-led study of more than 1,000 years of North American droughts and global conditions found that forecasting a lack of precipitation is rarely straightforward.

Where is the water during a drought?
In low precipitation periods - where and how is the limited available water distributed and what possibilities are there for improving retention in the soil and the landscape?

What does drought mean for endangered California salmon?
Droughts threatens California's endangered salmon population -- but pools that serve as drought refuges could make the difference between life and death for these vulnerable fish.

With shrinking snowpack, drought predictability melting away
New research from CU Boulder suggests that during the 21st century, our ability to predict drought using snow will literally melt away.

An evapotranspiration deficit drought index to detect drought impacts on ecosystems
The difference between actual and potential evapotranspiration, technically termed a standardized evapotranspiration deficit drought index (SEDI), can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with indices based on precipitation and temperature.

Sesame yields stable in drought conditions
Research shows adding sesame to cotton-sorghum crop rotations is possible in west Texas

Read More: Drought News and Drought Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.