Scientists have created a ceramic, resistant to extreme temperatures

August 19, 2016

Physicists and technicians of the TSU and Institute of Strength Physics and Materials Science SB RAS are developing experimental samples of ceramics that are resistant to extreme temperatures. The scientists aim to invent a material that can withstand up to 3,000 degrees Celsius. The new product will be used in the space industry and in the manufacture of aircraft engines. Samples of the material were presented at the Second International Conference and Expo on Ceramics and Composite Materials, held 25-26 July in Berlin.

- For a typical metal, the temperature limit is 1,200 degrees Celsius, and there are alloys that can withstand up to 2,000, - says Sergey Kulkov, head of the TSU department of the Faculty of Physics and Engineering and head of the laboratory ISPMS SB RAS. - We managed to create a new multi-layered ceramic material with heat resistance of the upper layer of more than 3,000 degrees Celsius.

This development is intended primarily for space and aviation. It will help to move to a new generation of engines. Multilayer ceramic (the layers are different types of ceramics based on hafnium carbide and zirconium diboride and oxide) will increase the temperature in the combustion chamber of jet engines. It also will provide increased protection of objects during reentry to the atmosphere.

Physicists and technicians plan to test their development in the head institute of Roscosmos State Corporation. The flow of plasma with hypersonic speed will be obtained in the special installation; a test sample of the multilayer ceramic will be placed in it. If in the first test stage the object remains intact at least for 20 seconds upon exposure to 2,200°C, it will prove that the scientists are on the right track.

The new material will also have applications in diagnosis. It also can be used in the manufacture of protective covers for temperature sensors measuring temperatures in the combustion chambers of jet engines. The thermocouples with sapphire tips that are used now cannot withstand the heat and go out of order.

The development of a new material is part of the Federal Target Programme (14.607.21.0056-RFMEFI60714X0056). The industrial partner of TSU is CJSC NEVZ-CERAMICS (Novosibirsk). The project cost about 50 million rubles. Scientists plan to finish work in December 2016.
-end-


National Research Tomsk State University

Related Ceramics Articles from Brightsurf:

FEFU scientists helped design a new type of ceramics for laser applications
Material scientists from Far Eastern Federal University (FEFU) joined an international team of researchers to develop new nanocomposite ceramics (Ho3+:Y2O3-MgO) that can be employed in high-capacity laser systems operating in the medium infrared range (IR) of 2-6 micrometers.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists develop sorbent for purifying water from radioactive elements
Scientists from Far Eastern Federal University (FEFU) in collaboration with colleagues from the Institute of Chemistry FEB RAS come up with a smart technology for the synthesis of sorbent based on a ''tungsten bronze'' compound powder (Na2WO4) aimed to purify industrial and drinking water from hazardous radionuclides cesium (137Cs), and strontium (90Sr), as well as for effective processing of liquid radioactive waste.

Understanding ceramic materials' 'mortar' may reveal ways to improve them
New research shows that in the important ceramic material silicon carbide, carbon atoms collect at those grain boundaries when the material is exposed to radiation.

Current model for storing nuclear waste is incomplete
The materials the United States and other countries plan to use to store high level nuclear waste will likely degrade faster than anyone previously knew, because of the way those materials interact, new research shows.

FEFU scientists participate in development of ceramic materials that are IR-transparent
Scientists from Far Eastern Federal University (FEFU) teamed up with colleagues from Institute of Chemistry (FEB RAS), Institute for Single Crystals (Ukraine), and Shanghai Institute of Ceramics (Chinese Academy of Sciences) to develop Y2O3?MgO nanocomposite ceramics with uniform distribution of two phases, microhardness over 11 GPa, and average grain size of 250 nm.

Ceramic industry should use carbon reducing cold sintering process says new research
A new techno-economic analysis, by a team led by a researcher from WMG at the University of Warwick, shows that the energy intensive ceramic industry would gain both financial and environmental benefits if it moved to free the cold sintering process from languishing in labs to actual use in manufacturing everything from high tech to domestic ceramics.

New technique to improve ductility of ceramic materials for missiles, engines
Purdue University researchers have developed a new process to help overcome the brittle nature of ceramics and make it more ductile and durable.

Lasers enable engineers to weld ceramics, no furnace required
Smartphones that don't scratch or shatter. Metal-free pacemakers. Electronics for space and other harsh environments.

FEFU scientists to broaden ideas about reactive sintering of transparent ceramics
Green bodies' porous structure, i.e. mesostructure, affects dramatically the functional parameters of the optical ceramics obtained by reactive sintering.

Read More: Ceramics News and Ceramics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.