NASA monitors the 'new normal' of sea ice

August 19, 2016

This year's melt season in the Arctic Ocean and surrounding seas started with a bang, with a record low maximum extent in March and relatively rapid ice loss through May. The melt slowed down in June, however, making it highly unlikely that this year's summertime sea ice minimum extent will set a new record.

"Even when it's likely that we won't have a record low, the sea ice is not showing any kind of recovery. It's still in a continued decline over the long term," said Walt Meier, a sea ice scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It's just not going to be as extreme as other years because the weather conditions in the Arctic were not as extreme as in other years."

"A decade ago, this year's sea ice extent would have set a new record low and by a fair amount. Now, we're kind of used to these low levels of sea ice - it's the new normal."

This year's sea ice cover of the Barents and Kara seas north of Russia opened up early, in April, exposing the surface ocean waters to the energy from the sun weeks ahead of schedule. By May 31, the extent of the Arctic sea ice cover was comparable to end-of-June average levels. But the Arctic weather changed in June and slowed the sea ice loss. A persistent area of low atmospheric pressure, accompanied by cloudiness, winds that dispersed ice and lower-than-average temperatures, didn't favor melt.

The rate of ice loss picked up again during the first two weeks of August, and is now greater than average for this time of the year. A strong cyclone is moving through the Arctic, similar to one that occurred in early August 2012. Four years ago, the storm caused an accelerated loss of ice during a period when the decline in sea ice is normally slowing because the sun is setting in the Arctic. However, the current storm doesn't appear to be as strong as the 2012 cyclone and ice conditions are less vulnerable than four years ago, Meier said.

"This year is a great case study in showing how important the weather conditions are during the summer, especially in June and July, when you have 24 hours of sunlight and the sun is high in the sky in the Arctic," Meier said. "If you get the right atmospheric conditions during those two months, they can really accelerate the ice loss. If you don't, they can slow down any melting momentum you had. So our predictive ability in May of the September minimum is limited, because the sea ice cover is so sensitive to the early-to-mid-summer atmospheric conditions, and you can't foresee summer weather."

As scientists are keeping an eye on the Arctic sea ice cover, NASA is also preparing for a new method to measure the thickness of sea ice - a difficult but key characteristic to track from orbit.

"We have a good handle on the sea ice area change," said Thorsten Markus, Goddard's cryosphere lab chief. "We have very limited knowledge how thick it is."

Research vessels or submarines can measure ice thickness directly, and some airborne instruments have taken readings that can be used to calculate thickness. But satellites haven't been able to provide a complete look at sea ice thickness in particular during melting conditions, Markus said. The radar instruments that penetrate the snow during winter to measure thickness don't work once you add in the salty water of the melting sea ice, since the salinity interferes with the radar.

The Ice, Cloud and land Elevation Satellite-2, or ICESat-2, will use lasers to try to get more complete answers of sea ice thickness. The satellite, slated to launch by 2018, will use a laser altimeter to measure the heights of Earth's surface.

In the Arctic, it will measure the elevation of the ice floes, compared to the water level. However, only about one-tenth of sea ice is above the water surface; the other nine-tenths lie below.

To estimate the entire thickness of the ice floe, researchers will need to go beyond the above-water height measurements, and perform calculations to account for factors like the snow on top of the ice and the densities of the frozen layers. Scientists are eager to see the measurements turned into data on sea ice thickness, Markus said.

"If we want to estimate mass changes of sea ice, or increased melting, we need the sea ice thickness," he said. "It's critically important to understanding the changes in the Arctic."

NASA/Goddard Space Flight Center

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to