Optic nerve stimulation to aid the blind

August 19, 2019

Scientists from EPFL in Switzerland and Scuola Superiore Sant'Anna in Italy are developing technology for the blind that bypasses the eyeball entirely and sends messages to the brain. They do this by stimulating the optic nerve with a new type of intraneural electrode called OpticSELINE. Successfully tested in rabbits, they report their results in Nature Biomedical Engineering.

"We believe that intraneural stimulation can be a valuable solution for several neuroprosthetic devices for sensory and motor function restoration. The translational potentials of this approach are indeed extremely promising", explains Silvestro Micera, EPFL's Bertarelli Foundation Chair in Translational Neuroengineering, and Professor of Bioelectronics at Scuola Superiore Sant'Anna, who continues to innovate in hand prosthetics for amputees using intraneural electrodes.

Blindness affects an estimated 39 million people in the world. Many factors can induce blindness, like genetics, retinal detachment, trauma, stroke in the visual cortex, glaucoma, cataract, inflammation or infection. Some blindness is temporary and can be treated medically. How do you help someone who is permanently blind?

The idea is to produce phosphenes, the sensation of seeing light in the form of white patterns, without seeing light directly. Retinal implants, a prosthetic device for helping the blind, suffer from exclusion criteria. For example, ½ million people worldwide are blind due to Retinitis pigmentosa, a genetic disorder, but only a few hundred patients qualify for retinal implants for clinical reasons. A brain implant that stimulates the visual cortex directly is another strategy albeit risky. A priori, the new intraneural solution minimizes exclusion criteria since the optic nerve and the pathway to the brain are often intact.

Previous attempts to stimulate the optic nerve in the 1990s provided inconclusive results. EPFL's Medtronic Chair in Neuroengineering Diego Ghezzi explains, "Back then, they used cuff nerve electrodes. The problem is that these electrodes are rigid and they move around, so the electrical stimulation of the nerve fibers becomes unstable. The patients had a difficult time interpreting the stimulation, because they kept on seeing something different. Moreover, they probably have limited selectivity because they recruited superficial fibers."

Intraneural electrodes may indeed be the answer for providing rich visual information to the subjects. They are also stable and less likely to move around once implanted in a subject, according to the scientists. Cuff electrodes are surgically placed around the nerve, whereas intraneural electrodes pierce through the nerve.

Together, Ghezzi, Micera and their teams engineered the OpticSELINE, an electrode array of 12 electrodes. In order to understand how effective these electrodes are at stimulating the various nerve fibers within the optic nerve, the scientists delivered electric current to the optic nerve via OpticSELINE and measured the brain's activity in the visual cortex. They developed an elaborate algorithm to decode the cortical signals. They showed that each stimulating electrode induces a specific and unique pattern of cortical activation, suggesting that intraneural stimulation of the optic nerve is selective and informative.

As a preliminary study, the visual perception behind these cortical patterns remains unknown. Ghezzi continues, "For now, we know that intraneural stimulation has the potential to provide informative visual patterns. It will take feedback from patients in future clinical trials in order to fine-tune those patterns. From a purely technological perspective, we could do clinical trials tomorrow."

With current electrode technology, a human OpticSELINE could consist of up to 48-60 electrodes. This limited number of electrodes is not sufficient to restore sight entirely. But these limited visual signals could be engineered to provide a visual aid for daily living.
-end-
This project was funded in part by the Wyss Center for Bio and Neuroengineering and by the Bertarelli Foundation.

Useful Links:

Press kit: http://bit.ly/2019OpticNerve

DOI: 10.1038/s41551-019-0446-8
https://www.nature.com/articles/s41551-019-0446-8

Similar Stories

https://actu.epfl.ch/news/a-retinal-implant-that-is-more-effective-against-5/

https://actu.epfl.ch/news/amputees-feel-as-though-their-prosthetic-limb-belo/

https://actu.epfl.ch/news/amputee-feels-texture-with-a-bionic-fingertip/

https://actu.epfl.ch/news/amputee-feels-in-real-time-with-bionic-hand/

Researcher contact details:

Diego Ghezzi, Medtronic Chair in Neuroengineering (English, Italian, French)
E: diego.ghezzi@epfl.ch
T: +41 21 693 37 34‬

Silvestro Micera: (English, Italian)
Bertarelli Foundation Chair in Translational Engineering
Professor at EPFL (Switzerland)
Professor of Bioelectronics at Scuola Superiore Sant'Anna
Email : silvestro.micera@epfl.ch [@santannapisa.it]
Mobile : +39 347 615 7257, +41 79 875 2080

Ecole Polytechnique Fédérale de Lausanne

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.