Nav: Home

Microgravity changes brain connectivity

August 19, 2019

An international team of Russian and Belgian researchers, including scientists from HSE University, has found out that space travel has a significant impact on the brain: they discovered that cosmonauts demonstrate changes in brain connectivity related to perception and movement.

Some areas, such as regions in the insular and parietal cortices, work more synchronously with other brain areas after the space flight. On the other hand, connectivity of some other regions, such as the cerebellum and vestibular nuclei, decreases. The results of the study were published in Frontiers in Physiology.

While Roscosmos is discussing future manned flights to Mars, NASA plans to open the International Space Station for commercial tourism, and SpaceX is testing its Starship Mars prototype, scientists are seriously concerned about the impact of a prolonged stay in space on the human body. During flights, astronauts are continuously exposed to weightlessness, which requires adaptation and causes changes within the body. Life on colonised planets and satellites - humanity's likely future - will demand special conditions to become safe for our body. While the effects of weightlessness on bones, muscles and the vestibular system are well known, how the human brain copes with microgravity has yet to be fully examined. Recent studies using neuroimaging show that space travel does not leave the brain unaffected.

An international team which included scientists from the HSE University, RAS Institute of Biomedical Problems, Federal Center of Treatment and Rehabilitation, Lomonosov Moscow State University, Gagarin Cosmonaut Training Centre and several Belgian research organisations used functional magnetic resonance imaging (fMRI) to measure functional brain connectivity in a group of eleven cosmonauts in a groundbreaking research project. It turned out that adaptation to microgravity and related changes in motor activity can cause the modifications of functional connectivity between the brain areas.

The researchers performed brain fMRIs on the cosmonauts before and after space missions lasting on average six months and then compared their data to those of healthy volunteers who had stayed on Earth. The researchers were looking for changes in connectivity between brain areas underlying sensorimotor functions such as movement and perception of body position. These brain areas were activated using gait-imitating plantar stimulation.

The researchers discovered changes in the cosmonauts' brain connections. To compensate for the lack of information from the organs of balance, which cannot provide reliable information in micrograviry, the brain develops an auxiliary system of somatosensory control, with increased reliance on visual and tactile feedback instead of vestibular input.

On the one hand, decreased connectivity between the cerebral cortex and vestibular nuclei has been revealed. Under Earth's gravity, vestibular nuclei are responsible for processing signals coming from the vestibular system. But in space, according to the researchers, the brain may downweight the activity of these structures to avoid conflicting information about the environment. They also found that after space flight, the connections of the cerebellum and a number of other structures, particularly those responsible for movement, decrease.

On the other hand, fMRI showed increased connections between the insular cortex in the left and right hemispheres, as well as between the insular cortex and other areas of the brain. Insular lobes, among other things, are responsible for the integration of signals coming from different sensor systems. Similar functions are performed by the area of parietal cortex in the right supramarginal gyrus, which also demonstrated increased connectivity with other areas of the brain after the flight.

'It's an interesting fact that connectivity increase between the right supramarginal gyrus and the left insular cortex was greater among those cosmonauts who experienced a less comfortable initial adaptation process on the space station (those who experienced vertigo, the illusion of body position, etc.),' says Ekaterina Pechenkova, Leading Research Fellow at the HSE Laboratory for Cognitive Research. The researchers believe that this kind of information will eventually help to better understand why it takes different lengths of time for different people to adapt to the conditions of space flight, and will help to develop more effective individual training programmes for space travelers.

National Research University Higher School of Economics

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
More Science News and Science Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...