Nav: Home

Lab-on-a-chip drives search for new drugs to prevent blood clots

August 19, 2019

A tiny lab the size of a postage stamp could be the next big thing in the search for safer anti-clotting drugs to prevent heart attacks and strokes.

The effectiveness of current anti-clotting medication can be limited due to the risk of complications, driving a need for alternatives that can both prevent the formation of blood clots and reduce the risk of excessive and life-threatening bleeding.

The new biocompatible lab-on-a-chip, detailed in a paper published recently in the journal Analytical Chemistry, could help accelerate the discovery and development of new anti-clotting therapies.

The technology has been developed by a team of biochemists and engineers led by RMIT University and the Haematology Micro-platforms group at the Australian Centre for Blood Diseases (ACBD) in Melbourne, Australia.

It effectively shrinks a medical pathology laboratory onto a small chip, with automated processes that can achieve in a few minutes what could take days in a full-sized lab.

The new device is designed specifically to work with the complex and sensitive biology of blood, featuring a unique system of micropumps and analysis tools for testing the effect of chemical compounds on how the blood clots.

Lead investigator Dr Warwick Nesbitt, RMIT and Monash University, is working with collaborators at the ACBD to use the pioneering device to better understand clotting mechanisms and develop new anti-clotting drugs.

Nesbitt said very few microdevices developed to date were suitable for clinical or research use, because they had not been driven by insight into how blood actually behaves.

"Blood is extremely sensitive to artificial surfaces and clots very easily, so blood-handling technologies must be equally sensitive," Nesbitt, a Vice-Chancellor's Senior Research Fellow at RMIT and group leader at ACBD, said.

"We've combined a deep understanding of the biology of blood with precision microfabrication engineering and design, to deliver a device that can work with whole blood and produce reliable results.

"We hope this powerful new tool will give researchers an edge in delivering better and safer anti-clotting treatments, to improve the health and wellbeing of millions around the world."

Co-lead author Dr Crispin Szydzik said the device could mimic conditions within blood vessels.

"It's a key step towards the development of quick and efficient microsystems for pre-clinical and clinical haematology screening and diagnostics."

Honey I shrunk the lab: how it works

The microlab can screen hundreds of drug compounds in just a few hours, revealing their effect on blood and quickly identifying those that have the most potential for clinical use.

The device is based on microfluidic chip technology developed at RMIT's Micro Nano Research Facility (MNRF) and within the Vascular Biology Laboratory (ACBD - Monash University).

A microfluidic chip contains an array of miniature channels, valves, processors and pumps that can precisely and flexibly manipulate fluids.

The chips combine speed, portability and capacity, handling vast quantities of tiny processing elements. Importantly, they are also scaleable and cheap to produce.

The microfluidic technology was combined with a sensitive assay for testing how platelets - the component of blood that forms clots - respond to different chemical combinations.

In a proof-of-concept application, the microlab was used to investigate how dosing blood with select small molecule inhibitors affects platelet thrombus dynamics, that is, how the platelets clump together.

The promising results demonstrated that the automated lab-on-chip could accurately control blood flow, deliver and mix drug compounds with blood in seconds and send the dosed blood to a downstream thrombus assay system.

MNRF Director, Distinguished Professor Arnan Mitchell, said existing technologies for testing chemical compounds in blood are highly labour intensive and time consuming, limiting how many can be screened at any time.

"Our device enables researchers to send hundreds of potential combinations through the system, mixing them with blood extremely rapidly and delivering results in just a few minutes," Mitchell said.

"Small, targeted, automated and precise - it's the future of drug development technology."
-end-
The research, with co-lead author Rose Brazilek (Monash University) and collaborators from University of Melbourne, is published in Analytical Chemistry (DOI: 10.1021/acs.analchem.9b02486).

The work was supported through Australian Research Council Discovery Project and National Health and Medical Research Council Development grants.

RMIT University

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.