Toddlers who use touchscreens show attention differences

August 19, 2020

Toddlers with high daily touchscreen use are faster to find targets that stood out during visual search compared to toddlers with no or low touchscreen use - according to new research.

The research team, co-led by Dr Rachael Bedford of the University of Bath's Department of Psychology, say the findings are important for the growing debate around the impact of screen time on toddlers and their development.

Lead researcher Professor Tim Smith, from Birkbeck's Centre for Brain and Cognitive Development, said: "The use of smartphones and tablets by babies and toddlers has accelerated rapidly in recent years. The first few years of life are critical for children to develop the ability to focus their attention on relevant information and ignore distraction, early skills that are known to be important for later academic achievement. There has been growing concern that toddler touchscreen use may negatively impact their developing attention but this fear is not based on empirical evidence."

To provide such evidence, Professor Smith's TABLET Project, at Birkbeck's Centre for Brain and Cognitive Development, recruited 12-month-old infants who had different levels of touchscreen usage.

The study followed them over the next 2.5 years, bringing them into the lab at 18 months and 3.5 years. At the 18-month and 3.5-year visits, toddlers took part in a computer task in which they were trained to search for a red apple amongst a varying number of either blue apples (easy search), or blue apples and red apple slices (difficult search). An eye tracker monitored their gaze and visually rewarded the child when they found the red apple, allowing them to perform the task even though they were too young to verbally describe what they were doing.

Co-investigator Dr Bedford commented: "We found that at both 18 months and 3.5 years the high touchscreen users were faster than the low users to find the red apple when it stood out amongst blue apples. There was no difference between the user groups when the apple was harder to find. What we need to know next is whether this attention difference is advantageous or detrimental to their everyday life. It is important we understand how to use this modern technology in a way that maximizes benefits and minimizes any negative consequences."

Dr Ana Maria Portugal, main researcher on the project points out "We are currently unable to conclude that the touchscreen use caused the differences in attention as it may also be that children who are generally more attracted to bright, colourful features seek out touchscreen devices more than those who are not."
-end-
This research was funded by Leverhulme Trust, Economic and Social Research Council (ESRC), and Wellcome Trust. Founded in 1998, the Centre for Brain and Cognitive Development is one of the world's leading centres for studying the way in which babies and young children's brains develop.

University of Bath

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.