COVID-19 cytokine storms may prevent a durable immune response

August 19, 2020

BOSTON - Shiv Pillai, MD, PhD, investigator in the Ragon Institute of MGH, MIT and Harvard and professor at Harvard Medical School (HMS), recently published a paper in Cell showing that that high levels of some cytokines seen in COVID-19 patients, as part of a cytokine storm, may prevent the development of long-term immunity to SARS-CoV-2, the virus that causes COVID-19.

"We've seen a lot of studies suggesting that immunity in COVID-19 may not be durable because the antibodies decline over time," says Pillai. "More telling for us was that in patients with both mild as well as severe disease, asntibodies lacked a key structural feature that is a hallmark of the 'highest quality' antibodies in a normal immune response. By using our understanding of how two different types of immune cells normally collaborate to make the best antibodies, we were able to find a mechanism that could explain this lower-quality immune response in COVID-19 patients."

Pillai's group, working with Robert Padera, MD, PhD, associate professor at HMS, examined the spleens and lymph nodes of deceased COVID-19 patients and found that a lack of germinal centers, an essential part of a durable immune response.

Germinal centers are structures induced within the lymph nodes and spleens during infection or vaccination. In them, B cells, the immune cells that produce antibodies, mature to become long-lived "memory" cells. This process, along with controlled mutations in antibody genes, allows the immune system to select for and immortalize B cells that make the best antibodies against a particular pathogen. This creates a life-long "memory" of a pathogen which allows the body to quickly and effectively identify and attack the pathogen in the case of re-infection. Without germinal centers, there aren't enough B cells that can create a high-quality antibody response to produce long-term immunity. To form germinal centers, B cells depend on key support from another specialized type of cell called a helper T cell. Pillai's group showed that in COVID-19 patients the specialized type of helper T cell does not develop, and as a consequence B cells are not helped in the right way. The study found no germinal centers in acutely ill patients.

Previous studies with infectious disease in mice have shown that high levels of cytokines, small signalling molecules unique to the immune system, can prevent the formation of these helper T cells and therefore of germinal centers. Large amounts of a cytokine called TNF, in particular, prevented germinal center formation. Severe COVID-19 cases were found to have massive amounts of TNF in the location where germinal centers would normally form.

Lack of germinal centers has been observed in other diseases, including SARS, and does not mean there is no immune response. "There is an immune response in COVID-19," Padera says. "It's just not coming from a germinal center." However, the lack of geminal centers could have major implications for development of herd immunity

"Without the formation of germinal centers, there is unlikely to be long-term memory to this virus developing from natural infections, meaning that while antibodies may protect people for a relatively short time, a single person who recovers from the disease could get infected again, perhaps six months later, or even multiple times with SARS-CoV-2. This suggests that developing herd immunity may be difficult," adds Pillai.

This finding would likely not affect vaccine-induced immunity, as vaccines do not induce cytokine storms. A vaccine-induced immune response would likely include the development of a germinal center, and the ensuing creation and immortalization of high-quality antibodies that would provide long-lasting protecting against COVID-19.
About the Ragon Institute of MGH, MIT and Harvard

The Ragon Institute of MGH, MIT and Harvard was established in 2009 with a gift from the Phillip T. and Susan M. Ragon Foundation, creating a collaborative scientific mission among these institutions to harness the immune system to combat and cure human diseases. With a focus on HIV and infectious diseases, the Ragon Institute draws scientists, clinicians and engineers from diverse backgrounds and areas of expertise to study and understand the immune system with the goal of benefiting patients.

For more information, visit

About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $1 billion and comprises more than 8,500 researchers working across more than 30 institutes, centers and departments. In August 2019 the MGH was named #6 in the nation by U.S. News & World Report in its list of "America's Best Hospitals."

Massachusetts General Hospital

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to