Prevention of heart disease can start before birth

August 19, 2020

Babies that experience low oxygen levels in the womb due to pregnancy complications often go on to develop heart disease in adulthood. A study using sheep has discovered that a specialised antioxidant called MitoQ can prevent heart disease at its very onset. The results are published today in the journal Science Advances.

Genetics, and their interaction with lifestyle risk factors such as smoking and obesity, play a role in determining heart disease risk in adults. But there is also strong evidence that the environment experienced during sensitive periods of fetal development directly influences long-term cardiovascular health - a process known as 'developmental programming.'

Low oxygen in the womb - known as chronic fetal hypoxia - is one of the most common complications in human pregnancy. In a process termed 'oxidative stress,' low oxygen to the developing fetus can cause damage to its heart and blood vessels. Fetal hypoxia can be diagnosed when a scan during pregnancy shows the baby is not growing properly.

"Many people may be predisposed to heart disease as adults because of the low level of oxygen they received in the womb. By providing a specific mitochondria-targeted antioxidant supplement to mothers whose pregnancy is complicated by fetal hypoxia, we can potentially prevent this," said Professor Dino Giussani from the University of Cambridge's Department of Physiology, Development and Neuroscience, who led the study.

Chronic hypoxia is common to many complications of pregnancy. It can be caused by a number of conditions including pre-eclampsia, infection of the placenta, gestational diabetes or maternal obesity.

Oxidative stress largely originates in the cells' mitochondria - the 'batteries' that power our cells - where the processes of respiration and energy production occur. To target mitochondria the Cambridge team used MitoQ, developed by Professor Mike Murphy and his colleagues at the University of Cambridge's MRC-Mitochondrial Biology Unit. MitoQ selectively accumulates within mitochondria, where it works to reduce oxidative stress.

Having established the safety of the treatment, the researchers gave MitoQ to pregnant sheep under low oxygen conditions. They found that the mitochondrial therapy protects against fetal growth restriction and high blood pressure in the offspring as adults. Using chicken embryos they also showed that MitoQ protects against mitochondria-derived oxidative stress.

MitoQ has already been used in a number of human trials, for example it was shown to lower hypertension in older subjects. It is very exciting to see the potential to use MitoQ to treat a baby during a problematic pregnancy and prevent problems arising far later in life. There's still a long way to go before this can be used by pregnant mothers, but our work points to new possibilities for novel treatments," said Professor Murphy, who was also involved in the study.

This is the first time that MitoQ has been tested during sheep pregnancy. Sheep are animals whose cardiovascular development resembles that of a human baby more closely than laboratory rats and mice. Chicken embryos were also used to isolate the direct effects of MitoQ therapy on the embryonic heart independent of any influence on the mother or placenta.

"Our cardiovascular health is influenced by the lifestyle choices we make in adult life, but can also be traced back to the conditions we experienced when developing inside the womb," said Professor James Leiper, Associate Medical Director at the British Heart Foundation.

He added: "This study reveals a plausible way to reduce the future risk of high blood pressure and consequent heart disease in babies from complicated pregnancies. Further research is now needed to translate these findings from animals to humans and identify the most effective time in development to give the MitoQ supplement to 'at risk' babies - whether that's a particular point during pregnancy or soon after birth. Overcoming this next hurdle will enable it to be tested in clinical trials."

Cardiovascular disease is a group of disorders of the heart and blood vessels that can cause heart attacks and strokes. It claims the life of one in three people, and costs the United States and Canada US$130 billion and the United Kingdom over £30 billion every year. The majority of these costs are for treatments that improve outcomes, but do not cure the disease.

There are increasing calls within the public health community to change the focus of cardiovascular disease research from treatment to prevention. By looking at the specific circumstances that increase the risk of developing heart disease, interventions can be made as early as possible rather than waiting until disease has become irreversible.

"If we want to reduce the prevalence of cardiovascular disease, we need to think of prevention rather than a cure. Applying this concept to pregnancy complications, we can bring preventative medicine all the way back into the womb - it's treatment before birth. It completely changes our way of thinking about heart disease," said Giussani.
-end-


University of Cambridge

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.