Argonne scientists create water filtration membranes that can clean themselves

August 19, 2020

Scientists at the Department of Energy's (DOE) Argonne National Laboratory have developed a light-activated coating for filtration membranes -- the kind used in water treatment facilities, at semiconductor manufacturing sites and within the food and beverage industry -- to make them self-cleaning, eliminating the need to shut systems down in order to repair them.

Cheap and effective, water filtration membranes have been around for years but have always been vulnerable to clogging from organic and inorganic materials that stop up its pores over time, a phenomenon known as fouling.

"Anything you stick in water is going to become fouled sooner or later," said Argonne senior scientist Seth Darling.

Darling is director of Argonne's Advanced Materials for Energy-Water Systems (AMEWS) Center, an Energy Frontier Research Center (EFRC) sponsored by the DOE.

"Almost all membranes used in the real world function by a physical mechanism, small holes that block whatever you are trying to filter out," he said. "But they are not doing any chemistry. That's what we've sought to change by putting a coating on the membrane that gives it chemical functionality."

"That's what differentiates our discovery from previous work in this area," said Seth Darling, senior scientist at the Department of Energy's Argonne National Laboratory. "The membrane can continue to be in service, eliminating the need to, for example, shut down a filtration system in order to clean or replace fouled parts."

While those who work in the area of water filtration have had some success in removing, cleaning and replacing fouled membranes, the process is far from ideal because it takes the membranes -- and sometimes entire water treatment systems -- out of service.

"What we're trying to do is prevent this entirely," Darling said.

He and his team's new, low-cost advancement is a game-changer for industries that rely on this type of technology.

The coating they use is based on titanium dioxide, or TiO2, which has been explored for water treatment applications for years because of its high stability, nontoxicity, low cost and biocompatibility.

Darling and his team took the technology a step further by adding a bit of nitrogen to the mix. The process, called nitrogen doping, makes the membrane sensitive to visible light. The coating serves as a catalyst that breaks down foulants, releasing them from the membrane, thereby rendering it clean.

"Normal TiO2 would work but only with ultraviolet light," said Huiru Zhang, a graduate student who worked on the project. "That might make sense in some situations, but it is far less accessible than visible light."

Compared to regular TiO2, nitrogen-doped TiO2-coated membranes display a 24-fold higher photocatalytic efficiency under sunlight.

Argonne's success in this area is unique: Never before had scientists been able to make membranes clean themselves while they are still functioning as a filter.

"That's what differentiates our discovery from previous work in this area," Darling said. "The membrane can continue to be in service, eliminating the need to, for example, shut down a filtration system in order to clean or replace fouled parts."

The project was funded by the DOE Office of Science as part of the AMEWS EFRC. Darling and his team recently published their findings in the journal Advanced Functional Materials.

"In principle, our discovery can be used anywhere membranes are in water, and even as a coating on other components in water systems," Darling said.
-end-
To learn more, contact partners@anl.gov.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

DOE/Argonne National Laboratory

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.