Milestone in the regeneration of brain cells

August 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called "astroglia". "Glia means "glue", explains Götz. "As befits their name, until now these cells have been regarded merely as a kind of "putty" keeping the nerve cells together.

A couple of years ago, the research group had been already able to prove that these glia cells function as stem cells during development. This means that they are able to differentiate into functional nerve cells. However, this ability gets lost in later phases of development, so that even after an injury to the adult brain glial cells are unable to generate any more nerve cells.

In order to be able to reverse this development, the team studied what molecular switches are essential for the creation of nerve cells from glial cells during development. These regulator proteins are introduced into glial cells from the postnatal brain, which indeed respond by switching on the expression of neuronal proteins.

In his current work, Dr. Benedikt Berninger, was now able to show that single regulator proteins are quite sufficient to generate new functional nerve cells from glia cells. The transition from glia-to-neuron could be followed live at a time-lapse microscope. It was shown that glia cells need some days for the reprogramming until they take the normal shape of a nerve cell. "These new nerve cells then have also the typical electrical properties of normal nerve cells", emphasises Berninger. "We could show this by means of electrical recordings".

"Our results are very encouraging, because the generation of correctly functional nerve cells from postnatal glia cells is an important step on the way to be able to replace functional nerve cells also after injuries in the brain," underlines Magdalena Götz.
-end-
Original publication: Benedikt Berninger, Marcos R. Costa, Ursula Koch, Timm Schroeder, Bernd Sutor, Benedikt Grothe, and Magdalena Götz: "Functional Properties of Neurons Derived from In Vitro Reprogrammed Postnatal Astroglia" J. Neurosci. 2007 27: 8654-8664; doi:10.1523/JNEUROSCI.1615-07.2007

Helmholtz Zentrum München - German Research Center for Environmental Health

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.