University of Oregon researcher finds that on water's surface, nitric acid is not so tough

August 20, 2007

EUGENE, Ore.--(Aug. 20, 2007)--Nitric acid is a notoriously strong and chemically destructive compound found in water on earth and in our atmosphere. However, a team of researchers have found that its punch is much weaker when it sits on the top of a water surface.

The discovery of the weaker and more highly exposed nature of nitric acid on the surface of water requires us to re-evaluate how we think about its reactive role in our world, said Geraldine Richmond, the Richard M. and Patricia H. Noyes Professor of Chemistry at the University of Oregon.

Richmond, who was named a Guggenheim Fellow for 2007 earlier this year, described her lab's exploratory research involving chemical reactions at the surface of water in a talk today (8:30 a.m. EDT) at the 234th national meeting of the American Chemical Society in Boston. Her address was one of six scheduled talks on "Recent Advances in Studies of Molecular Processes at Interfaces."

Richmond is the principal investigator on this and many recent papers that examine unique properties of water surfaces using a combination of computer modeling and laser based experiments.

Nitric acid, a commonly used strong acid in the laboratory, is most notable for its widespread use in the manufacture of fertilizers and explosives. In our environment it is an important player in the atmosphere, where it concentrates in clouds and is one of the primary components of acid rain. Once dissolved in water, its reactive acidic and oxidizing properties can become unleashed. The water causes it to break apart into hydrogen and nitrate ions, creating a highly acidic solution - hence its designation as a "strong acid" - that is very reactive to plants, soils and other matter. At high acid concentrations it can react explosively with other compounds, often releasing highly toxic gases.

Richmond and colleagues have found that when nitric acid swims to the top of a water surface, it tends to tread water - with part of its molecular structure in the air and the rest surrounded by water. Under these conditions they find that it is much less likely to dissociate into its ionic parts - giving the surface of nitric acid solutions very different reactive properties than its well-known reactive and acidic behavior in the bulk of the acid solution.

"Our combined laser experiments and computer simulations provide a rich picture of how nitric acid behaves on a water surface, the way it dances around on the top layer of the water surface in a way that significantly reduces its ability to shed its acidic hydrogen compared to when it is submerged in the liquid," Richmond said. "Hydrogen bonding to surface solvating water molecules plays a key role in this altered molecular behavior."

The exposed nature of nitric acid at the surface, Richmond said, makes it more readily available for reaction with immediate surroundings. But as a consequence of this exposure, it acts as a much weaker acid. The results have important implications for understanding the role of nitric acid in our environment, particularly in the many instances where the chemistry in our atmosphere occurs on the surface of nitric acid containing droplets and particulates.
Richmond's recent research has been funded by the National Science Foundation and the U.S. Department of Energy.

The experimental studies discussed in the presentation were detailed in a recent paper in the Journal of Physical Chemistry C co-authored with Richmond and her doctoral students Melissa Kido Soule and Patrick Blower, and an additional computational paper co-authored by Richmond with UO doctoral student Eric S. Shamay, Victoria Buch of The Hebrew University in Israel and Michele Parrinello of ETH Zurich in Switzerland.

Contact: Jim Barlow, 541-346-3481,

Source: Geraldine Richmond, the Richard M. and Patricia H. Noyes Professor of Chemistry, 541-346-4635,

Link: Geraldine Richmond's faculty page:

University of Oregon

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to