Nav: Home

Saliva could influence taste preferences

August 20, 2018

BOSTON, Aug. 20, 2018 -- Saliva is crucial for tasting and digesting food, but scientists have now found that it may have another, more subtle role. Salivary proteins could be part of a feedback loop that influences how food tastes to people -- and by extension, what foods they're willing to eat. The researchers hope that, one day, their findings could help consumers stick to a healthier diet.

They will present their results today at the 256th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 10,000 presentations on a wide range of science topics.

Many healthy foods -- like broccoli and dark chocolate -- taste bitter, Cordelia A. Running, Ph.D., says. She set out to see if eating bitter foods would help people overcome an aversion to bitter compounds. Thus, they could eat more of these healthy foods without cringing. "By changing your diet, you might be able to change your flavor experience of foods that at one point tasted nasty to you," she says.

While saliva consists almost entirely of water, it also contains thousands of proteins released by salivary glands. Some of these proteins are thought to bind to flavor compounds in food and also to taste receptor cells in the mouth. Certain proteins may be responsible for the astringent sensations, such as dryness and roughness, that develop when eating some chocolates, red wine and other foods. "If we can change the expression of these proteins, maybe we can make the 'bad' flavors like bitterness and astringency weaker," says Running, who is based at Purdue University and is the principal investigator of the study.

In prior work with rats, Running's fellow researcher Ann-Marie Torregrossa, Ph.D., and colleagues showed that a bitter diet altered expression of proteins in the rodents' saliva. Those changes in protein composition correlated with the rats' feeding behavior. After initially cutting back on bitter foods, the animals apparently experienced less bitterness and resumed normal eating levels. Inspired by the work of Torregrossa, who is now at the University at Buffalo, Running decided to see if the same thing would happen in people.

Running's team carried out sensory evaluation tests in which they asked participants to drink chocolate almond milk three times a day for a week and rate its bitterness and astringency. The researchers found that the protein composition of the participants' saliva changed during that week. Several proline-rich proteins, which can bind the bitter/astringent compounds in chocolate, increased after drinking the chocolate almond milk. The changes in these proteins corresponded to changes in sensory ratings: As these proteins shifted up, the sensory ratings for bitterness and astringency shifted down. "We think the body adapts to reduce the negative sensation of these bitter compounds," Running explains.

The findings to-date support the idea that "saliva modifies flavor, which in turn modifies dietary choices," she says. "Those choices then influence exposure to flavors, which over time may stimulate altered expression of saliva proteins, and the circle begins anew. Maybe this knowledge will help someone stick to a healthier diet long enough to adapt to like it."

Running plans to investigate the particular compounds in food that elicit changes in salivary proteins. In chocolate, for example, she wants to know what concentration of bitter polyphenols is necessary to affect expression of salivary proteins. She also wants to assess how long it takes to reduce the bitter taste of any given food and whether mimics for salivary proteins could someday be added to food to improve its flavor.
A press conference on this topic will be held Tuesday, August 21, at 1:30 p.m. Eastern time in the Boston Convention & Exhibition Center. Reporters may check-in at the press center, Room 102 A, or watch live on YouTube To ask questions online, sign in with a Google account.

The project is being supported by Purdue University and the U.S. Department of Agriculture.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook


Flavor influences diet, but diet may also influence saliva, which in turn may influence flavor


Saliva is the chemical media of the mouth. The composition of this media is thus critical to the experience of flavor as well as to explaining individual differences in flavor perception. A host of potential flavor binding proteins in saliva have been identified for decades. Yet, how flavor exposure or dietary patterns might alter the longer term dynamics of human salivary protein expression remains relatively unexplored. In several studies, we have collected data on dietary habits and sensory perception of various flavor compounds, as well as used dietary interventions to explore how these factors may interact with salivary proteomes over time. Through these experiments, we are discovering that many of the previously identified binding proteins in saliva may be modifiable by exposure to their flavor ligands. Furthermore, dietary choices such as fruit and vegetable consumption may alter expression of salivary proteins potentially linked to texture perception, inflammatory response, and enzymatic activity in the mouth. Analyzing the salivary proteomes at the individual level is allowing for improved detection of these effects, as well as expanding our understanding of the variability of salivary proteomes from one person to the next. Thus, a new picture of saliva as a dynamic medium is developing: saliva modifies flavor, which in turn modifies dietary choices. Those choices then influence exposure to flavors, which over time may stimulate altered expression of saliva, and the circle begins anew.

American Chemical Society

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at