Nav: Home

A new generation of artificial retinas based on 2D materials

August 20, 2018

BOSTON, Aug. 20, 2018 -- Scientists report they have successfully developed and tested the world's first ultrathin artificial retina that could vastly improve on existing implantable visualization technology for the blind. The flexible device, based on very thin 2D materials, could someday restore sight to the millions of people with retinal diseases. And with a few modifications, the device could be used to track heart and brain activity.

The researchers are presenting their work today at the 256th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 10,000 presentations on a wide range of science topics.

"This is the first demonstration that you can use few-layer graphene and molybdenum disulfide to successfully fabricate an artificial retina," Nanshu Lu, Ph.D., says. "Although this research is still in its infancy, it is a very exciting starting point for the use of these materials to restore vision," she says, adding that this device could also be implanted elsewhere in the body to monitor heart and brain activities.

The retina, located at the back of the eye, contains specialized photoreceptor cells called rods and cones that convert incoming light into nerve signals. These impulses travel into the brain via the optic nerve where they are decoded into visual images.

Diseases such as macular degeneration, diabetic retinopathy and retinitis pigmentosa can damage or destroy retinal tissue, leading to vision loss or complete blindness. There is no cure for many of these diseases, but silicon-based retinal implants have restored a modicum of vision to some individuals. However, Lu says these devices are rigid, flat and fragile, making it hard for them to replicate the natural curvature of the retina. As a result, silicon-based retinal implants often produce blurry or distorted images and can cause long-term strain or damage to surrounding eye tissue, including the optic nerve. Lu, who is at the University of Texas at Austin, and her collaborator Dae-Hyeong Kim, Ph.D., who is at Seoul National University, sought to develop a thinner, more flexible alternative that would better mimic the shape and function of a natural retina.

The researchers used 2D materials, including graphene and molybdenum disulfide, as well as thin layers of gold, alumina and silicon nitrate to create a flexible, high-density and curved sensor array. The device, which resembles the surface of a flattened soccer ball or icosahedron, conforms to the size and shape of a natural retina without mechanically disturbing it.

In laboratory and animal studies, photodetectors on the device readily absorbed light and passed it through a soft external circuit board. The circuit board housed all of the electronics needed to digitally process light, stimulate the retina and acquire signals from the visual cortex. Based on these studies, the researchers determined that this prototype artificial retina is biocompatible and successfully mimics the structural features of the human eye. They say it could be an important step in the quest to develop the next generation of soft bio-electronic retinal prostheses.

Moving ahead, Lu is exploring ways to integrate this technology into mechanically and optically imperceptible electronic tattoos that are laminated on the skin surface to gather real-time health information. Lu says that the team plans to add transistors to these transparent e-tattoos to help amplify signals from the brain or the heart so they can be more easily monitored and treated. These ultrathin sensors and electrodes can also be implanted on the surface of the heart to detect arrhythmias. Lu says doctors could potentially program them to act like tiny pacemakers, sending electrical impulses through the heart to correct the problem.
-end-
A press conference on this topic will be held Monday, August 20, at 2:30 p.m. Eastern time in the Boston Convention & Exhibition Center. Reporters may check-in at the press center, Room 102 A, or watch live on YouTube http://bit.ly/ACSLive_Boston2018. To ask questions online, sign in with a Google account.

Lu acknowledge funding from the National Science Foundation and the Office of Naval Research.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

2D Materials based on Epidermal and Implantable Conformal Electronics

Abstract

Bio-tissues are soft, curvilinear and dynamic whereas wafer-based electronics are hard, planar, and fragile. Such mismatch fundamentally impedes their integration with each other. As atomically thin, optically transparent, mechanically robust, and highly functional electronic materials, 2D materials are ideal for conformable bioelectronics. We have invented a cost- and time-effective "wet transfer, dry patterning" process for the freeform manufacture of graphene e-tattoos (GETs). Our GET has a total thickness of less than 500 nm, an optical transparency of ~85%, and a stretchability of more than 40%. Tensile fracture of PMMA-supported graphene has been experimentally investigated and different stages of fracture have been identified. GET can be directly laminated on human skin exactly like a temporary transfer tattoo and can fully conform to the microscopic morphology of the skin surface via just van der Waals forces. Analytical models are developed to guide the GET design for full skin conformability even under skin deformation [4]. As a dry electrode, GET-skin interface impedance is found to be as low as medically used Ag/AgCl gel electrodes. GET has been successfully applied to measure electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), skin temperature, and skin hydration. When applied around human eyes, imperceptible GET electrooculogram (EOG) sensors can capture eye movement with an angular resolution of 4 degrees, which can be used to wirelessly control a quadcopter in real-time. In addition to noninvasive e-tattoos, we have engineered human eye-inspired soft implantable optoelectronic device using atomically thin MoS2-graphene heterostructure and strain-releasing, retina conformable designs. The hemispherically curved image sensor array exhibits infrared blindness and successfully acquires pixelated optical signals. We propose the ultrathin hemispherically curved image sensor array as a promising imaging element in the soft retinal implant with minimum mechanical loading to the retina. Optical signals obtained by this curved image array can be converted to electrical stimulations applied to optic nerves to restore visualization.

American Chemical Society

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Beautiful Brain: The Drawings of Santiago Ramon y Cajal
by Larry W. Swanson (Author), Eric Newman (Author), Alfonso Araque (Author), Janet M. Dubinsky (Author)

Brain Maker: The Power of Gut Microbes to Heal and Protect Your Brain–for Life
by David Perlmutter (Author), Kristin Loberg (Contributor)

The Whole-Brain Child: 12 Revolutionary Strategies to Nurture Your Child's Developing Mind
by Daniel J. Siegel (Author), Tina Payne Bryson (Author)

Grain Brain: The Surprising Truth about Wheat, Carbs, and Sugar--Your Brain's Silent Killers
by David Perlmutter (Author), Kristin Loberg (Contributor)

The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science
by Norman Doidge (Author)

The Brain's Way of Healing: Remarkable Discoveries and Recoveries from the Frontiers of Neuroplasticity
by Norman Doidge (Author)

Brain Quest Preschool, revised 4th edition: 300 Questions and Answers to Get a Smart Start (Brain Quest Decks)
by Chris Welles Feder (Author), Susan Bishay (Author)

Neuroscience: Exploring the Brain
by Mark F. Bear (Author), Barry W. Connors (Author), Michael A. Paradiso (Author)

Brain Food: The Surprising Science of Eating for Cognitive Power
by Lisa Mosconi PhD (Author)

Switch On Your Brain: The Key to Peak Happiness, Thinking, and Health
by Dr. Caroline Leaf (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.