Gene therapy vectors carrying the telomerase gene do not increase the risk of cancer

August 20, 2018

Negative results and findings in science are perhaps less newsworthy, but they are no less important. Particularly when, as in this case, they demonstrate that a possible new therapeutic pathway against idiopathic pulmonary fibrosis and other diseases associated to short telomeres is in fact safe. Researchers from the Spanish National Cancer Research Centre (CNIO) have shown in a new study that the gene therapy with telomerase that they have developed, and which has proven to be effective in mice against diseases caused by excessive telomere shortening and ageing, does not cause cancer or increase the risk of developing it, even in a cancer-prone setting.

This paper has been published in the journal PLoS Genetics with the participation of Miguel Angel Muñoz and Paula Martinez from the Telomeres and Telomerase Group led by Maria A. Blasco at the CNIO. In this study, CNIO researchers also collaborated with by Fàtima Bosch from the Gene Therapy Centre (CBATEG) at Barcelona's Autonomous University.

CNIO's Telomeres and Telomerase Group has for years now been investigating the possibility of using the enzyme telomerase to treat pathological processes related with telomere shortening, as well as diseases associated with ageing - cardiovascular and neurodegenerative diseases, among others - and even the ageing process itself. In 2012, they designed a highly innovative strategy: a gene therapy that reactivates the telomerase gene using adeno-associated viruses (AAV). These gene therapy vectors do not integrate in the genome of the host cell, thus telomerase only performs its telomere-reparative actions during a few cell divisions before the vector is diluted out. In this manner, a potential risk associated with the activation of telomerase, such as promoting cancer, it is minimized. But to what extent? The potential medical use of telomerase still clashes with fears surrounding a possible increased risk of cancer.

The paper being published now specifically tackles this question by applying gene therapy to an animal model, a mouse, which reproduces human lung cancer and which, therefore, already has a greater risk of developing this disease. The results are negative: "The activation of telomerase by means of [this gene therapy] does not increase the risk of developing cancer", not even in these mice, where tumours are forced to appear in a relatively short time, write the authors.

"These findings suggests that gene therapy with telomerase appears to be safe, even in a pro-tumour context", noted Blasco. "In our research, we were already seeing that this gene therapy does not increase the risk of cancer, but we wanted to conduct what is known as a 'killer experiment', an experiment that creates the worst conditions for your hypothesis to hold true; if it survives even under those circumstances, the hypothesis is truly solid. That is why we chose these mice; they are animals that spontaneously develop a type of lung cancer that is very similar to the human form, which normally never appears in normal mice. We can't think of any other experiment that would provide a better demonstration of the safety of this therapy".

How to use a double-edged sword

Telomeres are at the ends of chromosomes, in the nucleus of every cell in the body; with each cell division, telomeres get a bit shorter, and when this shortening becomes excessive, the cell stops dividing and the tissue from which they are derived no longer regenerates. We know that telomere shortening plays a key role in ageing: both in animal models and in humans, it has been shown that the older the individual is, the shorter their telomeres. It has also been proven that mutations in genes related to telomeres give rise to a series of diseases called telomere syndromes, including aplastic anaemia and idiopathic pulmonary fibrosis.

Telomerase is the enzyme that repairs the telomeres, and we all have the gene that produces it. In general, telomerase is only active during embryonic development (especially in the so-called pluripotent cells), but a few days after birth, its expression is silenced. In healthy adults, most cells do not contain telomerase: their telomeres cannot be repaired after each cell division, and that is why they are shorter than in younger individuals. One exception are cancer cells, in which telomerase is active, and that is in fact one of the reasons why these cells divide prolifically: their telomeres never shorten enough to halt division, and as a result, cancer cells are virtually immortal.

Telomerase has always been seen as a double-edged sword: by repairing telomeres, we prevent one of the causes of ageing along with a series of diseases, but it could also favour the unchecked division of emerging tumours thus causing cancer.

Researchers from CNIO have witnessed the power of telomerase in action: in 2001, they created the first transgenic mice that expressed adult telomerase, and they saw that with ageing, there could be a slight increase in the incidence of cancer. But in 2008, they proved that transgenic animals for telomerase also aged more slowly and lived up to 40% longer if, besides from expressing telomerase, they are also made more resistant to cancer. This strategy is not applicable to humans because it would entail modifying the genome from the embryonic stage.

What is potentially applicable to humans is gene therapy, which activates telomerase where it is required, following a single local injection. Thus far, researchers have managed to demonstrate that this gene therapy with telomerase is proving to be effective in mice against infarction - contributing to the regeneration of heart tissue -, aplastic anaemia, and idiopathic pulmonary fibrosis.

In all cases, gene therapy with telomerase has been seen to offer therapeutic effects. In particular, in the case of pulmonary fibrosis, which was perhaps one of the most spectacular results, telomerase was capable of halting the progression of this disease in animal models. Although none of the mice subjected to gene therapy developed more cancer, the CNIO group wished to conduct an experiment to dispel any doubts and make it patent that safe therapy based on telomerase is possible in order to speed up the clinical application of telomerase for the treatment of diseases that currently have no cure.
-end-


Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Lung Cancer Articles from Brightsurf:

State-level lung cancer screening rates not aligned with lung cancer burden in the US
A new study reports that state-level lung cancer screening rates were not aligned with lung cancer burden.

The lung microbiome may affect lung cancer pathogenesis and prognosis
Enrichment of the lungs with oral commensal microbes was associated with advanced stage disease, worse prognosis, and tumor progression in patients with lung cancer, according to results from a study published in Cancer Discovery, a journal of the American Association for Cancer Research.

New analysis finds lung cancer screening reduces rates of lung cancer-specific death
Low-dose CT screening methods may prevent one death per 250 at-risk adults screened, according to a meta-analysis of eight randomized controlled clinical trials of lung cancer screening.

'Social smokers' face disproportionate risk of death from lung disease and lung cancer
'Social smokers' are more than twice as likely to die of lung disease and more than eight times as likely to die of lung cancer than non-smokers, according to research presented at the European Respiratory Society International Congress.

Lung cancer therapy may improve outcomes of metastatic brain cancer
A medication commonly used to treat non-small cell lung cancer that has spread, or metastasized, may have benefits for patients with metastatic brain cancers, suggests a new review and analysis led by researchers at St.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.

Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.

Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.

Read More: Lung Cancer News and Lung Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.