A single change at telomeres controls the ability of cells to generate a complete organism

August 20, 2019

Pluripotent cells can give rise to all cells of the body, a power that researchers are eager to control because it opens the door to regenerative medicine and organ culture for transplants. But pluripotency is still a black box for science, controlled by unknown genetic (expression of genes) and epigenetic signals (biochemical marks that control gene expression like on/off switches). The Telomeres and Telomerase Group, led by Maria Blasco at the Spanish National Cancer Research Centre (CNIO), now uncovers one of those epigenetic signals, after a detective quest that started almost a decade ago.

It is a piece of the puzzle that explains the observed powerful connection between the phenomenon of pluripotency and telomeres -protective structures at the ends of chromosomes-, a kind of butterfly effect in which a protein that is only present in telomeres shows a global action on the genome. This butterfly effect is essential to initiate and maintain pluripotency.

The DNA of telomeres directs the production of long RNA molecules called TERRAs. What the CNIO researchers found is that TERRAs act on key genes for pluripotency through the Polycomb proteins, which control the programs that determine the fate of cells in the early embryo by depositing a biochemical mark on the genes. The on/off switch that regulates TERRAs, in turn, is a protein that is only present in telomeres; this protein is TRF1, one of the components of the telomere-protecting complex called shelterin. The new result is published this week in the journal eLife.

Why is a telomere gene required for pluripotency?

It has been known for about fifteen years how to return the power of pluripotency to cells by acting on certain genes. However, the researchers noticed that this recipe did not work if the TRF1 gene was turned off. Moreover, TRF1 was one of the most activated genes when pluripotency was induced. These facts intrigued the researchers. Why was TRF1, a gene whose product is only found in telomeres, activated so much, and how could this be essential for pluripotency?

"We could not understand how a gene that deals with telomere maintenance has such a profound effect on a global process like pluripotency," says Maria Blasco, Head of the Telomeres and Telomerase Group at CNIO.

To find an explanation, they decided to carry out a random search by analyzing the changes in the expression of the entire genome when the expression of TRF1 was prevented - something like blindly casting a large net into the sea to see what is in it. "We saw that TRF1 had an enormous, but very organized, effect," explains Blasco.

The expression of many genes was altered, and more than 80% of them were directly related to the phenomenon of pluripotency. The researchers also noted that many of these genes were regulated by Polycomb, a protein complex that is very important in the early stages of embryonic development and that directs cells to specialize into the different cell types of the adult body.

The link is TERRA

But they still did not understand what the link between Polycomb and TRF1 was. Last year, however, Blasco's Group discovered that the TERRA molecules that are produced in telomeres communicate with Polycomb and that together they are involved in building the telomere structure.

The researchers decided to analyze the interaction between TERRA and the entire genome, and sure enough, they found that TERRA stuck to the same genes that were regulated by Polycomb. This suggested that TERRA was the link between TRF1 and pluripotency.

TRF1 "exerts a butterfly effect on the transcription of pluripotent cells, by altering the epigenetic landscape of these cells through a novel mechanism, which involves TERRA-mediated changes in the action of Polycomb," the researchers write in eLife.

As Rosa Marión, first author of the study, explains, "these findings tell us that TRF1 is essential for reprogramming specialized cells and for maintaining pluripotency."
The study has been funded by the Spanish Ministry of Science, Innovation and Universities, the National Institute of Health Carlos III, the Community of Madrid, World Cancer Research and the Botín Foundation and Banco Santander through Santander Universities.

Reference article: TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. Rosa M. Marión et al (eLife, 2019). DOI: https://doi.org/10.7554/eLife.44656

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.