Nav: Home

Machine learning models help clinicians identify people who need advanced depression care

August 20, 2019

Researchers at Regenstrief Institute and Indiana University created decision models capable of predicting which patients might need more treatment for their depression than what their primary care provider can offer. The algorithms were specifically designed to provide information the clinician can act on and fit into existing clinical workflows.

Depression is the most commonly occurring mental illness in the world. The World Health Organization estimates that it affects about 350 million people. Some people may be able to manage their depression on their own or with guidance from a primary care provider. However, others may have more severe depression that requires advanced care from mental health care providers.

The Regenstrief and IU researchers created algorithms to identify those patients so that primary care doctors and providers can refer them to mental health specialists.

"Our goal was to build reproducible models that fit into clinical workflows," said Suranga N. Kasthurirathne, PhD, first author of the paper and research scientist at Regenstrief Institute. "This algorithm is unique because it provides actionable information to clinicians, helping them to identify which patients may be more at risk for adverse events from depression."

The algorithms combined a wide variety of behavioral and clinical information from the Indiana Network for Patient Care, a statewide health information exchange, for patients at Eskenazi Health. Dr. Kasthurirathne and his team developed algorithms for the entire patient population, as well as several different high-risk groups.

"By creating models for different patient populations, we offer health system leaders the option of selecting the best screening approach for their needs," said Dr. Kasthurirathne. "Perhaps they don't have the computational or human resources to run models on every single patient. This gives them the option to screen select high-risk patients." Dr. Kasthurirathne is also a visiting research assistant professor at the Indiana University Richard M. Fairbanks School of Public Health at IUPUI.

"Primary care doctors often have limited time, and identifying patients with more severe forms of depression can be challenging and time consuming. Our model helps them help their patients more efficiently and improve quality of care simultaneously," said Shaun Grannis, M.D., M.S., co-author on the paper and director of the Clem McDonald Center for Biomedical Informatics at Regenstrief Institute. "Our approach is also well suited to leverage increasing health information technology adoption and interoperability to enable preventive care and improve access to wraparound health services." Dr. Grannis is the Clem McDonald Professor of Biomedical Informatics at Indiana University School of Medicine.

Researchers are now working to integrate social determinants of health into these models.

This research was conducted as part of Dr. Kasthurirathne's doctoral dissertation.
-end-
"Identification of Patients in Need of Advanced Care for Depression Using Data Extracted From a Statewide Health Information Exchange: A Machine Learning Approach," was published on July 22 in the Journal of Medical Internet Research.

Additional coauthors include Paul G. Biondich, M.D., M.S., director of the Global Health Informatics Program at Regenstrief and associate professor at IU School of Medicine; Saptarshi Purkayastha, PhD, Indiana University School of Informatics and Computing; Joshua R. Vest, PhD, MPH, research scientist at Regenstrief and Center for Health Policy director, Fairbanks School of Public Health; and Josette F. Jones, PhD, IU School of Informatics and Computing. All of the authors were members of Dr. Kasthurirathne's doctoral committee.

Regenstrief Institute

Related Science Articles:

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
AAAS and March for Science partner to uphold science
AAAS, the world's largest general scientific organization, announced Thursday that it will partner with the March for Science, a nonpartisan set of activities that aim to promote science education and the use of scientific evidence to inform policy.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...