Researchers measure the global magnetic field in solar corona for the first time

August 20, 2020

The Sun is a magnetized star. Its magnetic field is essentially three dimensional and it occupies all layers of the solar atmosphere. However, routine measurements of the solar magnetic field have only been achieved at the photospheric level, or the solar surface.

Lacking precise knowledge about the magnetic field in the outermost solar atmosphere, the corona, has impeded our understanding of the solar magnetism and many phenomena in the solar atmosphere.

An international team led by TIAN Hui, a professor from both Peking University and National Astronomical Observatories of Chinese Academy of Sciences (NAOC), has measured the global magnetic field of the solar corona for the first time. The study was published in Science on August 7.

The team used observations from the Coronal Multi-channel Polarimeter (CoMP), an instrument operated by the High Altitude Observatory, National Center for Atmospheric Research, USA.

More than 20 years ago, a technique called coronal seismology or magneto-seismology has been introduced for coronal magnetic field measurements. This method makes use of some types of oscillations or waves that are observed in coronal structures.

However, these oscillations/waves are just occasionally observed in small regions of the corona, and thus their potential for magnetic field measurements is limited.

CoMP is a coronagraph with a 20-cm aperture. It can observe the solar corona using the Fe XIII 1074.7 nm and 1079.8 nm infrared spectral lines. The Doppler image sequence obtained from CoMP observations often reveal the prevalence of propagating periodic disturbances, indicating the ubiquitous presence of transverse plasma waves in the corona.

The team applied the magneto-seismology method to these pervasive waves. They extended the previously developed wave-tracking technique to the whole field of view, and obtained the distribution of the wave propagation speed in the global corona.

They also obtained a global map of the coronal density from observations of the two Fe XIII lines. Combing the maps of wave propagation speed and density, they mapped the magnetic field in the global corona.

"By applying this technique to CoMP-like instruments in the future, global coronal magnetic field maps could be routinely obtained, filling in the missing part of the measurements of the Sun's global magnetism," said Prof. TIAN.

Such measurements could provide critical information to advance our understanding of the physical mechanisms responsible for solar eruptions and the 11-year sunspot cycle.
-end-


Chinese Academy of Sciences Headquarters

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.