Discovery lays blame on supernova for extinction event nearly 360 million years ago

August 20, 2020

LAWRENCE, KANSAS -- Between a decline in biodiversity and a series of extinction events, the Late Devonian period was not the most hospitable time on Earth.

And then came one or more supernovae explosions whose resulting ionizing radiation was the final push that spelled the end for armored fish, most trilobites and other life.

In a paper published Aug. 18 in PNAS, three University of Kansas researchers and their colleagues lay out such a scenario for end-Devonian extinctions.

"For more than a decade, my colleagues and I have been interested in the possibility of ionizing radiation events causing extinction events on Earth," said Adrian Melott, professor emeritus of physics & astronomy at the University of Kansas.

Previous findings had pointed to this final extinction event of the Devonian happening in tandem with a drop in ozone in Earth's stratosphere.

"When I heard about the evidence for ozone depletion at the end-Devonian, it triggered thoughts about the possibility of a chain of nearby supernovae," Melott said.

Previous research had pointed to other possible causes for the ozone depletion, such as global warming, but not astrophysical sources like exploding stars.

However, a fellow KU researcher had findings that suggested otherwise. Brian Thomas, an adjunct researcher in physics & astronomy and professor of physics at Washburn University, had shown that atmospheric warming and the resulting injection of water into the lower stratosphere -- suggested as a mechanism to cause the ozone depletion -- were just not tenable.

Moreover, another KU researcher, Bruce Lieberman, had further findings that pointed to an astrophysical cause. Lieberman, a professor of ecology & evolutionary biology, had previously emphasized that the end-Devonian extinctions were part of a long period of diversity decline. This prolonged decline is then followed by evidence of pollen malformations, suggesting ionizing radiation as the cause.

That left a series of supernovae as the only tenable possibility, Melott said.

The researchers estimate the supernovae that triggered these events to be around 60 light years away. For context, Betelgeuse, a future supernova getting a lot of attention for its recent behavior, is about 600 light years away.

The supernovae that triggered end-Devonian extinction would have been close enough to cause some radiation damage on Earth, but not close enough for life-shattering damage.

"The cosmic rays from such a supernova will produce muons in the atmosphere, which are a very penetrating kind of radiation," Melott said. "They could cause internal damage in large animals and in organisms up to a half-mile down in the ocean."

The major ionization of the lower atmosphere may have led to a lot of lightning, he said, which could start fires and change the climate.
The KU researchers' collaborators on the paper came from the University of Illinois, King's College London, European Organization for Nuclear Research (CERN), Estonia's National Institute of Chemical Physics and Biophysics and the U.S. Air Force Academy.

University of Kansas

Related Ozone Articles from Brightsurf:

Investigating the causes of the ozone levels in the Valderejo Nature Reserve
The UPV/EHU's Atmospheric Research Group (GIA) has presented a database comprising over 60 volatile organic compounds (VOC) measured continuously over the last ten years in the Valderejo Nature Reserve (Álava, Basque Country).

FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.

Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.

New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.

Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.

Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.

Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.

Read More: Ozone News and Ozone Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to