Stanford researcher finds method to define genetic 'words'

August 21, 2003

STANFORD, Calif. - With the human genome in hand, scientists now know the roughly 30,000 words making up the language of the human body. But what do those words mean? Stuart Kim, PhD, associate professor of developmental biology and genetics at the Stanford School of Medicine, has created the first dictionary that defines them.

His work, published in the Aug. 21 advance online version of the journal Science, could help researchers understand the role of newly identified genes. It also provides a glimpse into how a gene's function has evolved over time. "This tool tells you which genetic words are used together. If I see a new word and I see its context, I know what that word means," Kim said.

Kim's method works because scientists already understand the role many proteins play within a cell. Of these known genes, those involved in the same process, such as cell division, all tend to be active at the same time. Relying upon context, scientists can deduce that an undefined gene active at the same time as genes with a known function is probably involved in the same process.

Kim and graduate student Joshua Stuart created their genetic dictionary from gene activity data in four organisms: humans, fruit flies, a roundworm called C. elegans and yeast. Previous experiments at Stanford have yielded a wealth of information about when and in what tissues the genes in these organisms become active.

From these data, Kim and his colleagues figured out which genes happened to be churning out protein at the same time. Their results showed groups of genes with identical patterns of activity. Some genes within these groups have known activities, providing a context for the many genes whose function was previously unknown.

Kim and his colleagues tested their resource using five genes with previously unknown functions. These genes were always active at the same time as a network of genes known to be involved in cell proliferation. These genes also happened to be extremely active in cancer cells, which fail to divide normally, adding credence to the idea that these were cell division genes. To further test the role of one gene, the researchers eliminated its function in C. elegans. Some cells in those worms began rampant division. "This tells us that the five genes really are involved in proliferation," Kim said.

"People can go to this dictionary and find out how their word is used," Kim said. His data is available online for researchers who want to learn more about their favorite undefined gene.

Kim envisions numerous uses for this resource. Researchers who study a particular cellular function may seek out novel genes that are activated in concert with their usual genetic suspects. Other researchers may want to know the function of a gene that's mutated in people with a genetic disease. Kim's database could pinpoint a role for the disease gene, guiding future research in that disorder.

Kim added that his data also could be used to identify genes that have changed function over time. He said some genes are part of the same network in all organisms from yeast to humans. These genes are often involved in very basic processes such as making proteins. Other genes, such as those involved in the nervous system, may have changed little over time, but they are activated with a different group of genes in each organism. The proteins made by these genes have taken on new roles as evolution has progressed.

Eran Segal, a graduate student in computer science, is a co-first author on the paper. Daphne Koller, PhD, associate professor of computer science at Stanford, shares contributing authorship with Kim.
-end-
Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu

Stanford University Medical Center

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.