Pellets of power designed to deliver hydrogen for tomorrow's vehicles

August 21, 2007

BOSTON - Hydrogen may prove to be the fuel of the future in powering the effi cient, eco-friendly fuel cell vehicles of tomorrow. Developing a method to safely store, dispense and easily "refuel" the vehicle's storage material with hydrogen has baffl ed researchers for years. However, a new and attractive storage medium being developed by Pacific Northwest National Laboratory scientists may provide the "power of pellets" to fuel future transportation needs.

The Department of Energy's Chemical Hydrogen Storage Center of Excellence is investigating a hydrogen storage medium that holds promise in meeting long-term targets for transportation use. As part of the center, PNNL scientists are using solid ammonia borane, or AB, compressed into small pellets to serve as a hydrogen storage material. Each milliliter of AB weighs about three-quarters of a gram and harbors up to 1.8 liters of hydrogen. Researchers expect that a fuel system using small AB pellets will occupy less space and be lighter in weight than systems using pressurized hydrogen gas, thus enabling fuel cell vehicles to have room, range and performance comparable to today's automobiles.

"With this new understanding and our improved methods in working with ammonia borane," said PNNL scientist Dave Heldebrant, "we're making positive strides in developing a viable storage medium to provide reliable, environmentally friendly hydrogen power generation for future transportation needs."

A small pellet of solid ammonia borane (240 mg), as shown, is capable of storing relatively large quantities of hydrogen (0.5 liter) in a very small volume.

PNNL scientists are learning to manipulate the release of hydrogen from AB at predictable rates. By varying temperature and manipulating AB feed rates to a reactor, researchers envision controlling the production of hydrogen and thus fuel cell power, much like a gas pedal regulates fuel to a car's combustion engine. "Once hydrogen from the storage material is depleted, the AB pellets must be safely and effi ciently regenerated by way of chemical processing," said PNNL scientist Don Camaioni. "This 'refueling' method requires chemically digesting or breaking down the solid spent fuel into chemicals that can be recycled back to AB with hydrogen."
Don Camaioni and Dave Heldebrant will make their presentations at the 234th American Chemical Society National Meeting in Boston, Mass., on Tuesday, August 21, at 11:10 a.m. and 2:30 p.m., respectively, in the Boston Park Plaza's Cambridge Room.

PNNL ( is a DOE Office of Science national laboratory that solves complex problems in energy, national security and the environment, and advances scientific frontiers in the chemical, biological, materials, environmental and computational sciences. PNNL employs 4,200 staff , has a $750 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Department of Energy's Chemical Hydrogen Storage Center of Excellence ( partners in this project include the Universities of Alabama, California at Davis, Washington, and Pennsylvania, and Los Alamos National Laboratory.

Some of this research was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory ( in Richland, Wash. EMSL is a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

DOE/Pacific Northwest National Laboratory

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to