Feeling hot, hot, hot: New study suggests ways to control fever-induced seizures

August 21, 2007

When your body cranks up the heat, it's a sign that something's wrong--and a fever is designed to help fight off the infection. But turning up the temperature can have a down side: in about one in 25 infants or small children, high fever can trigger fever-induced (febrile) seizures. While the seizures themselves are generally harmless, a prolonged fever resulting from infection or heatstroke of over 108˚F (42˚C) can eventually lead to respiratory distress, cognitive dysfunction, brain damage or death.

New research by scientists at the University of Toronto Mississauga and Queen's University has shown that genetic variation in the foraging gene results in different tolerance for heat stress, and demonstrates how the use of specific drugs can replicate this effect in fruit flies and locusts. While the findings are at an early stage, the researchers suggest that since this genetic pathway is found in other organisms, it could lead to ways to rapidly protect the brain from extremely high fevers in mammals, including humans. The new study appears in the August 22 issue of the journal PLoS ONE, the online, open-access journal from the Public Library of Science.

"Our research suggests that manipulation of a single gene or genetic pathway will be sufficient to rapidly protect the nervous system from damage due to extreme heat stress," says senior researcher, Professor Marla B. Sokolowski, who holds a Canada Research Chair in Genetics.

In their research, post-doctoral fellow Ken Dawson-Scully and Sokolowski demonstrate that the foraging gene, responsible for a protein called PKG, protects against heat-induced neural failure in fruit flies and locusts. When they increased the temperature by 5˚C per minute (starting from 22˚C and rising to 42˚C), they found that fruit flies with a lower level of PKG experienced neural failure at much higher temperatures than those with higher levels of PKG.

Using drugs that interact with the PKG molecule, the researchers showed it is possible to induce an extremely rapid protection of neural function during heat stress. Queen's biologists Gary Armstrong and Mel Robertson exposed locusts to increasing heat while monitoring the neural circuit that controls breathing. At approximately 30˚C (about three minutes before expected neural failure), the researchers injected the locusts with a PKG inhibitor. Compared to locusts who received a placebo injection, the treated locusts showed a rapid and significant protection of their neural circuitry.

"During heat trauma to the brain, there exists a window of opportunity between the time of occurrence of neural dysfunction and eventual brain damage or death," says Dawson-Scully. "Manipulation of the PKG pathway during this period should increase an individual's chance of survival."

The research was supported by the Heart and Stroke Foundation of Canada, the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.
-end-
Disclaimer The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Contact:

Marla Sokolowski University of Toronto Mississauga Tel: +1 905-828-5326 Email: msokolow@utm.utoronto.ca

Ken Dawson-Scully University of Toronto Mississauga Tel: +1 905-569-4399 Email: k.dawson.scully@utoronto.ca

Citation: Dawson-Scully K, Armstrong GAB, Kent C, Robertson RM, Sokolowski MB (2007) Natural Variation in the Thermotolerance of Neural Function and Behavior due to a cGMP-Dependent Protein Kinase. PLoS ONE 2(8): e773. doi:10.1371/journal.pone.0000773

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://www.plosone.org/doi/pone.0000773

PRESS ONLY PREVIEW:http://www.plos.org/press/pone-02-08-sokolowski.pdf

Related image for press release: http://www.plos.org/press/pone-02-08-sokolowski1.jpg (Caption: Locust. Credit: Gary Armstrong)

Related image for press release: http://www.plos.org/press/pone-02-08-sokolowski2.jpg (Caption: Fruit fly. Credit: Mark FitzPatrick)

PLOS

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.