CasPER -- a new method for diversification of enzymes

August 21, 2018

A new study published in the Metabolic Engineering Journal describes a method based on CRISPR/Cas9, which enables flexible engineering of essential and nonessential enzymes without additional engineering. This could be of great importance for various aspects including the development of bio-based production of pharmaceuticals, food additives, fuels and cosmetics.

"When having a production strain this will make it easier for one to engineer certain limiting enzymes in the biosynthetic pathway and increase efficiency, specificity or diversity. People would be able to discover the best trade-off enzyme variants in the pathway and increase production of valuable compounds," says Tadas Jakociunas, Researcher at the Novo Nordisk Foundation Center for Biosustainability, DTU.

The newly developed method is named CasPER and is building on existing technologies, such as CRISPR/Cas9, that has been used for genome engineering and re-programming in yeast during the last years. However, the new tool enables scientists to engineer enzymes or their active domains by integrating much longer diversified fragments providing the opportunity to target every single nucleotide in a specific region. In yeast, CasPER was able to integrate mutagenized DNA fragments with almost 100% efficiency even in multiplex manner.

Discovery of enzymes variants

In depth characterisation of the new method concludes that the main difference between already existing CRISPR/Cas9 methods is that CasPER allows very efficient integration and in multiplex manner of large DNA fragments bearing various mutations to generate pools of cells with hundreds of thousands of enzymes variants.

While other CRISPR methods rely mostly on integration of shorter sequences to diversify DNA and require multiple rounds of engineering, CasPER significantly broadens the length of engineered DNA fragments. Furthermore, it does not require any additional steps making it faster and more effective to diversify enzymes to produce higher yields of desired chemicals.

Screening platform

Before the introduction of CRISPR/Cas9 it was a rather slow process to engineer essential enzymes in e.g. yeast. Today it is much more flexible regarding what you can target, and that makes it more viable to engineer enzymes to be more efficient and specific allowing them to transform more substrate into a product.

"It is still very costly and time-consuming to build cell factories for production of valuable compounds so investing all that money and time on engineering it needs to pay off. You need to produce a certain amount of product to make it commercially relevant, and a tool like CasPER will definitely help to speed up and upscale this process," says Tadas Jakociunas.

As a proof-of-concept in this study, the scientists targeted several essential enzymes in the mevalonate pathway. This biosynthetic route is responsible for production of sterols and is essential in most living organisms. By studies in humans it is best known as the target of statins, a class of cholesterol lowering drugs. These drugs are based on inhibiting some of the steps in the pathway. In some bacteria and eukaryotes this pathway is responsible for producing the largest class of compounds called isoprenoids.

To prove the applicability and efficiency of CasPER scientists targeted two essential enzymes in the mevalonate pathway and were able to select cell factories with up to 11-fold increased production of carotenoids.

Great potential in industry and academia

In the future, CasPER can be widely used both in academia and industry for various purposes. Although the main application of the method was to speed up and lower the costs for engineering and optimizing cell factories, the method can also be applied for any experiment where diversification of DNA is needed.

"You can study protein functions to develop protein structure prediction tools, and study protein interactions with DNA, substrates and other molecules to diversify regulatory elements such as promoters, terminators and enhancers," says Tadas Jakociunas.

The method was validated in yeast, but it can also be applied in other organisms with efficient homologous recombination machinery.
-end-


Technical University of Denmark

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.