Nav: Home

A common ancestral gene causes body segmentation in spiders and insects

August 21, 2018

Scientists have pinpointed a key gene that controls segmentation during spider development, which reveals a further similarity to the control of segmentation in insects, a study in eLife reports.

The research suggests the Sox gene was duplicated in the spider and then may have replaced the function of another related Sox gene that is still used in segmentation in insects, shedding new light on the evolutionary secrets that allow such a diverse range of animals to build their bodies.

Segmentation is an essential developmental process in arthropods that involves the formation of body segments with different functions. In insects, this happens in two ways - either all segments are made almost simultaneously, or a few segments at the front of the body are specified, such as the head, and then posterior segments are added afterwards, which is similar to what happens in most other arthropods such as spiders.

"We have a detailed and growing understanding of the regulation of segmentation in various insects, but previous studies have shown that some different genetic mechanisms are used to generate segments in spider embryos," says lead author Christian Paese, PhD Student in the Evolution of Animal Development and Morphology Group at Oxford Brookes University, UK. "In insects, the SoxB gene, Dichaete, is involved in segmentation. Having identified a family of Sox genes in the spider Parasteatoda tepidariorum, we wanted to see whether they also play a role during segmentation in these animals too."

The team first studied where the different Sox genes are used in spider embryos. They established that Sox21b-1 was supplied by the mother spider, and that its patterns of activity suggested it was involved in segmentation.

To study this further, they used RNA interference to silence the Sox21b-1 gene in the spider and observed the effects on development. This revealed that the gene is needed for segmentation of both the anterior and posterior segments in spiders. In the anterior, Sox21b-1 plays the role of a 'gap gene', meaning it is one of the first genes to be switched on in development and specifies the simultaneous formation of some of the leg-bearing segments of the body. In the posterior, Sox21b-1 regulates the 'segment addition zone', which allows additional segments to be sequentially added by switching on an important set of developmental genes in the Wnt and Delta-Notch pathways (cell-signalling systems that regulate development in multicellular organisms).

The team also showed that, as well as being involved in segmentation, Sox21b-1 regulates cell division in the early embryo. Although Sox21b-1 silencing had the most pronounced effects on the trunk of the developing spider, causing shortened embryos with missing leg segments, it also influenced the fate of cells in the head region too, which requires further investigation.

"Our work on Sox21b-1 provides important new insights into the evolution and regulation of segmentation in arthropods," concludes senior author Alistair McGregor, Professor of Evolutionary Developmental Biology at Oxford Brookes University. "It is highly significant that two very closely related SoxB genes are involved in segmentation in both Parasteatoda tepidariorum spiders and in insects, pointing to an ancient role for this subfamily of Sox genes in invertebrates. It will be interesting to examine any segmentation roles of Sox genes in other spiders and arachnids, including those that did not undergo a genome duplication."
-end-
Reference

The paper 'A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider' can be freely accessed online at https://doi.org/10.7554/eLife.37567. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

This work was originally published as a preprint on bioRxiv, at https://doi.org/10.1101/298448.

Media contacts

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

Natalie Gidley, Communications Officer (Media Relations)
Oxford Brookes University
pr@brookes.ac.uk
01865 484452

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Evolutionary Biology, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org.

To read the latest Evolutionary Biology research published in eLife, please visit https://elifesciences.org/subjects/evolutionary-biology.

About Oxford Brookes University

Set in a historic student city, Oxford Brookes is one of the UK's leading universities and enjoys an international reputation for teaching excellence and innovation as well as strong links with business and industry. More information is available on the Oxford Brookes website at http://www.brookes.ac.uk.

eLife

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"