Nav: Home

Better genome editing

August 21, 2018

A major obstacle to in-cell genome editing is, well, the cell itself.

"Human cells don't like to take in stuff," explained UC Santa Barbara's Norbert Reich, a professor in the Department of Chemistry and Biochemistry. The human cell has evolved a "trash disposal" mechanism that isolates and breaks down foreign proteins and other unwanted biomolecules, pathogens and even damaged cellular structures, he explained. So, for people in fields such as biotechnology, biopharmacology and genomic research and therapeutics -- such as those working with the gene editing juggernaut CRISPR-Cas9 technology -- results are only as good as their ability to efficiently bypass this defense mechanism and accurately introduce proteins into animal cells.

Reich and his team have developed such a method. Their technique, estimated to be 100 to 1,000 times more efficient than current methods, gives users complete spatiotemporal control of the genome editing delivery, in effect allowing them to decide exactly when and where to release genome editing proteins.

"We can actually hit individual cells," Reich said. "We can even hit parts of a cell so we could release the protein into only a part of the cell. But the main point is that we have the control over where and when this protein that's going to cut the DNA is going to be released."

The research by Reich's group, "Light-Triggered Genome Editing: Cre Recombinase Mediated Gene Editing with Near-Infrared Light" appears in the journal Small.

One attention-grabbing recent breakthrough in biotechnology is the use of gene editing proteins -- "molecular scissors" such as CRISPR, Cas and, in this study, Cre -- to find, cut and paste specific sections of target DNA sequences. Originally a defense mechanism used by bacteria and archaea to recognize DNA from attacking viruses and mark them for destruction, scientists have since developed methods of recognizing, cutting and binding base pair sequences of various lengths, using various proteins. The potential for this technology is massive, and ranges from basic research that determines the function and identification of genes to therapies that could fix cellular-level defects.

Key to the Reich group's light-triggered genome editing are hollow gold nanospheres onto which are coated DNA reporter strands (they fluoresce red) and a protein fusion of Cre recombinase and cell-penetrating peptides. And near-infrared light.

"So now we've got a homing device and a delivery agent," Reich said, explaining that the Cre recombinase and peptide fusion act as the targeting system, one that goes into play when the target cell does its cellular trash disposal.

Once taken into the cell, the nanoshell is enveloped in an endosome -- a membranous pocket that isolates it and transports it through the cell.

"But the nanoshells don't do anything because they're entrapped," Reich said. Ultrafast pulsed near-infrared laser light -- which is harmless to cells and is efficient at tissue penetration -- is then aimed at the entrapped nanoshells and their protein coats.

"Near-infrared wavelengths cause a really interesting thing to happen," Reich said. "It causes the gold nanoshell to get excited and it causes whatever we've attached to come off." At the same time, nanobubbles form, causing openings in the endosome and allowing its protein contents to escape. The proteins are now free to home in on the cell's nucleus, where its genetic material is stored, and gain entry with the cell-penetrating peptide. And Cre can get to work finding, cutting and pasting its reporter strands into the helix.

The group's in-vitro experiment proved successful: After a period of incubation, cells penetrated by the protein-coated nanoshells, followed by irradiation, glowed red.

"We didn't engineer anything that would make the cells behave differently," Reich said. "We made it so the cell would look different because of this fluorescent protein."

Said the paper's lead author, Dean Morales, who is now a postdoctoral researcher at Los Alamos National Laboratory, "As a basic research tool, with spatiotemporal control each cell can become an experiment. Imagine you'd like to study the function of a certain gene and how it alters that cell's behavior or its behavior with a close neighbor. Using the plasmonic nanoparticles as an antenna we can either turn on or turn off a gene of interest and observe in real-time the ramifications of its activity."

Spatiotemporal control also allows those who employ it to tread lightly on DNA, the rewriting of which, the researchers acknowledge, has very powerful and transgenerational effects.

"In certain cases, like somatic mutations, not every cell in the body would require editing," Morales said. "The ability to control where and when the editing machinery can be used provides transience to the procedure. The importance of this is that current approaches to gene editing often result in the editing machinery being left in an active form in the targeted cell, with unknown long-term ramifications. Our approach delivers the editing machinery in a transient fashion, and thus circumvents this problem."
-end-
Research on this project was conducted also by co-authors Erin Morgan, Megan McAdams and Amanda B. Chron of UC Santa Barbara; and Jeong Eun Shin and Joseph Zasadzinski, of University of Minnesota.

University of California - Santa Barbara

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.