Scientists probe how distinct liquid organelles in cells are created

August 21, 2019

BUFFALO, N.Y. -- The interior of a human cell consists, in part, of a complex soup of millions of molecules.

One way these biological compounds stay organized is through membrane-less organelles (MLOs) -- wall-less liquid droplets made from proteins and RNA that clump together and stay separate from the rest of the cellular stew.

You can think of these fluid compartments as being akin to oil droplets in water. MLOs facilitate storage of molecules within cells and can serve as a center of biochemical activity, recruiting molecules needed to carry out essential cellular reactions.

Though these droplets are plentiful within cells, they represent an emerging field of study in cell biology. Little is known about how they are created and maintained with unique functionalities.

To address this knowledge gap, one University at Buffalo laboratory is using cutting-edge scientific techniques to probe the fundamental properties of how MLOs work. The research is led by Priya R. Banerjee, PhD, an assistant professor of physics in the UB College of Arts and Sciences.

In a paper published on Aug. 21 in Scientific Reports, Banerjee and colleagues report that MLOs may be highly sensitive to the level of divalent cations inside cells. This is important because divalent calcium and magnesium ions aid in cellular signaling and are vital to life.

In experiments, MLOs containing both proteins and RNA form when divalent cations were found in low concentrations. But when concentrations of these cations were high, liquid organelles holding only RNA molecules were favored. The tests were systematically performed using controlled model systems comprising protein and RNA molecules floating in a buffer solution.

VIDEO: http://www.buffalo.edu/news/releases/2019/08/020.html

"It's interesting because you haven't changed the basic ingredients," Banerjee says. "But when you alter the ionic environment, you find that these organelles are highly tunable. They 'switch' from one type to the other, with each type having a distinct internal design."

The study was led by Banerjee and Ashok Deniz, PhD, associate professor of integrative structural and computational biology at Scripps Research, a nonprofit medical research institution.

The team demonstrated that fluctuations in divalent cations can profoundly tune the liquid properties of MLOs, altering the internal environment of the droplet. This is important since cells are believed to control some MLO functionality by changing their interior design. The concept of tunable intracellular droplet organelles is currently being actively investigated in Banerjee's lab at UB.

In a separate paper published earlier in 2019, Banerjee and colleagues explored another fundamental property of MLOs: conditions that drive such droplets to switch from a fluid, liquidy state to a harder, gel-like state.

"The concept that protein and nucleic acid droplets can function as organelles in a cell has started shifting the paradigm of cell biology that is written in a textbook," Banerjee says. "Reports started emerging from several different laboratories across the world that MLOs are relevant in gene regulation, protection of cells during stress, immune response and many other biological functions, as well as diseases such as neurological disorders and cancer. Therefore, understanding how MLOs are formed, tuned and altered in diseases are of key importance in the field now."
-end-
The first authors of the paper in Scientific Reports were Paulo L. Onuchic and Anthony N. Milin, graduate students at Scripps. Ibraheem Alshareedah, UB PhD student in physics, made important contributions as a co-author to the study, which was funded by the National Institute of General Medical Sciences, part of the National Institutes of Health; the National Science Foundation; and the UB College of Arts and Sciences.

University at Buffalo

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.