Large tin monosulfide crystal opens pathway for next generation solar cells

August 21, 2020

Tin monosulfide (SnS) is a promising material used for next generation solar cells because of its nontoxic characteristics and abundance, in addition to its excellent photovoltaic properties. Sakiko Kawanishi and Issei Suzuki led a team that has succeeded in growing large single crystals of SnS, which can provide a pathway for the fabrication of SnS solar cells with a high conversion efficiency.

A p-n homojunction, which consists of p-type and n-type SnS, is key to obtaining SnS solar cells with high efficiency. The manufacturing of such solar cells has until now proved difficult due to the complexity of fabricating n-type SnS in contrast to the easily fabricable p-type SnS.

To solve the problem, the team designed an original feed composition used for the flux growth of SnS crystals. This is something that had not been successfully trialed before. A dramatic change appeared in the grown crystals by halogen addition, that is, enlargement of the crystal size to a maximum 24 mm in width (Figure 1), in addition to including an n-type conduction characteristic. The larger crystals lower the stakes of trial manufacturing the SnS solar cells with p-n homojunction, which accelerates the development for practical application.
-end-
These significant results were published in Crystal Growth & Design in August 21st, 2020.

Tohoku University

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.