From biopaste to bioplastic

August 21, 2020

A viscous biopaste that is easy to process, solidifies quickly and is suitable for producing even complex structures using the 3D printing process has been developed by a research team headed by Prof. Dr. Marie-Pierre Laborie from the Chair of Forest Biomaterials at the University of Freiburg. The wood-based biodegradable synthetic could potentially be used in lightweight construction, amongst other things. The scientists have published their initial results in the journals Applied Bio Materials and Biomacromolecules.

Lignin strengthens the cell walls of plants and causes them to turn woody (lignify) - a mechanism that helps plants to protect themselves against wind or pests. It is a waste product from paper manufacture and largely incinerated to produce bioenergy. "This is why we're researching into alternative possibilities for making better use of this raw material in future," says Laborie. As a result the team started to reexamine a combination of materials which was already investigated in the 1980s by an American research team. In this system, liquid crystals based on cellulose, the main component of plant cell walls, ensure not only the strength but also the good flow properties of the biopaste. The other component, lignin, can 'stick together' the microstructure in the process of creating the biosynthetic, as Robert Gleuwitz discovered in his doctoral thesis. Its orientation subsequently determines the characteristics of the biosynthetic: for instance, it can respond more rigidly or more flexibly, depending on the direction from which the force comes.

Further research work will however be necessary until industrial application is possible, for example as a composite in lightweight construction. Until now the team has used exceptionally pure lignin which is produced in a pilot biorefinery at the Fraunhofer Center for Chemical-Biotechnological Processes (CBP) in Leuna - whether the waste product from the paper industry can also be directly processed still has to be researched. As Lisa Ebers shows in her doctoral thesis, the characteristics of the biosynthetic can also be varied in many ways, for instance by chemically processing or varying the components: Trials to date have used lignin from beech trees - if it is obtained from other plants it will have slightly different material characteristics such as different liquid crystals, even though they are all based on cellulose. The optimal quantity ratios also differ depending on the planned application. In addition, the researchers will soon be testing an entirely different possible use: the quality of soil can be analyzed with the help of the bio-based material. This takes place by studying the degradability of lignin and cellulose in various types of soil.

The results arose from a research project by the Sustainability Center Freiburg and the Fraunhofer Society. The research and 3D printing trials took place in cooperation with Prof. Dr. Dr. Christian Friedrich and Dr. Gopakumar Sivasankarapillai at the Freiburg Materials Research Center (FMF) of the University of Freiburg and with Dr. Gilberto Siqueira in the Swiss Federal Laboratories for Materials Testing and Research (EMPA) in Dübendorf, Switzerland.
-end-
Original publications:

Gleuwitz, F.R./ Sivasankarapillai, G./ Siqueira, G./Friedrich, C./ Laborie, M.-P. G. (2020): Lignin in Bio-Based Liquid Crystalline Network Material with Potential for Direct Ink Writing. In: Applied Bio Materials. https://doi.org/10.1021/acsabm.0c00661

Gleuwitz, F.R./ Sivasankarapillai, G./Chen, Y./Friedrich, C./ Laborie, M.-P. G. (2020): Lignin-Assisted Stabilization of an Oriented Liquid Crystalline Cellulosic Mesophase, Part B: Toward the Molecular Origin and Mechanism. In: Biomacromolecules 21/6, p. 2276?2284.

https://dx.doi.org/10.1021/acs.biomac.0c00220

Gleuwitz, F.R./Friedrich, C./Laborie, M.-P. G. (2020): Lignin-Assisted Stabilization of an Oriented Liquid Crystalline Cellulosic Mesophase, Part A: Observation of Microstructural and Mechanical Behavior. In: Biomacromolecules 21/3, p. 1069?1077.

https://dx.doi.org/10.1021/acs.biomac.9b01352

Contact:

Institute of Forest Sciences
Faculty of Environment and Natural Resources'
University of Freiburg

University of Freiburg

Related Lignin Articles from Brightsurf:

Utilizing a 'krafty' waste product: Toward enhancing vehicle fuel economy
Researchers from Kanazawa University have chemically modified Kraft lignin -- ordinarily considered in the paper industry to be a waste product -- and used it to produce quality carbon fiber.

CRISPRing trees for a climate-friendly economy
Researchers led by prof. Wout Boerjan (VIB-UGent Center for Plant Systems Biology) have discovered a way to stably finetune the amount of lignin in poplar by applying CRISPR/Cas9 technology.

New process boosts lignin bio-oil as a next-generation fuel
A new low-temperature multi-phase process for upgrading lignin bio-oil to hydrocarbons could help expand use of the lignin, which is now largely a waste product left over from the productions of cellulose and bioethanol from trees and other woody plants.

Lightweight green supercapacitors could charge devices in a jiffy
In a new study, researchers at Texas A&M University have described their novel plant-based energy storage device that could charge even electric cars within a few minutes in the near future.

From biopaste to bioplastic
Forest scientists develop innovative wood-based materials for 3D printing.

Key technology for mass-production of lignin-bio-aviation fuels for reducing greenhouse gas
The team, led by Dr. Jeong-Myeong Ha of the Clean Energy Research Center at the Korea Institute of Science and Technology(KIST), has developed a technology that can be used to mass-produce aviation-grade fuels from wood wastes.

Researchers develop sustainable method for extracting vanillin from wood processing waste
Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have developed a new sustainable method of extracting the flavoring agent vanillin from lignin, a component of wood.

A model for better predicting the unpredictable byproducts of genetic modification
Researchers are interested in genetically modifying trees for a variety of applications, from biofuels to paper production.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Plastic from wood
The biopolymer lignin is a by-product of papermaking and a promising raw material for manufacturing sustainable plastic materials.

Read More: Lignin News and Lignin Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.