One more hit from rare Earth: Efficient coherent spin manipulation by the electric field

August 21, 2020

Electricity and magnetism have been unified by Maxwell's equations, which is the foundation of a vast amount of modern technologies. Nevertheless, achieving efficient coupling of electric and magnetic properties in solid materials has always been challenging throughout the century. This mainly results from that the magnetic and electric properties originate from, respectively, the spin and orbital dynamics of the electron. With these two dynamics being relatively independent from each other, the magneto-electric coupling is hardly observed in most materials, and the electric and magnetic fields, as external stimuli, tend to affect the material by its spin and orbital behaviors only separately.

The quantum nature of the electron spin makes it promising for application in fields like quantum information processing. Most state-of-the-art approaches to manipulate the spins rely on external magnetic fields, typically magnetic resonance. Although an electric field approach for spin manipulation may outperform in aspects such as spatial resolution, energy efficiency and the trivial structure in device construction, the limitation that the electron spin is insensitive to the external electric field forces one to use electrodes charged with tens of kV and positioned with a gap narrower than the diameter of a human hair in order to achieve it practically. If the coupling between the electron spin and the external electric field can be enhanced by chemical design, the magnitude of the driving electric field can be significantly lowered, allowing more rapid and convenient spin manipulation.

Prof. Shang-Da Jiang from College of Chemistry and Molecular Engineering at Peking University, proposed that thanks to the significant spin-orbit coupling in rare earth ions, one can utilize their atomic orbitals to enhance the coupling between the electron spin and the external electric field and furthermore make possible the spin manipulation with low voltage. Having overcome the common drawbacks of rare earth ions such as poor quantum coherence, the Jiang team achieved high-efficiency coherent manipulation of the electron spin by the electric field. Figure 2 shows the quantum phase of the superposition state of the Ce3+ ion under controlled periodic evolution.

On this basis, the team optimized experimental conditions and realized an efficient controllable quantum phase gate and demonstrated the quantum bang-bang control, quantum Zeno effect and the Deutsch-Jozsa algorithm. The authors consider that the reason the driving voltage in this work was reduced only to 50 V was the limitation of the prepared sample size. If the system can be further miniaturized to the micrometer scale, the manipulation will be possible with even lower voltage and higher efficiency. With the sophisticated chip fabrication technologies in relative industries, accommodating the whole system in an integrated circuit and controlling it from an external interface is expectable. Therefore this work is believed to foreshadow the possibility to fabricate the applicable quantum computation unit with the electron spin.
-end-
This work is recently published in National Science Review and funded by National Natural Science Foundation of China, Ministry of Science and Technology of China and Beijing Academy of Quantum Information Sciences.

See the article:

Electric field manipulation enhanced by strong spin-orbit coupling: promoting rare-earth ions as qubits
National Science Review, 2020. DOI: 10.1093/nsr/nwaa148
https://doi.org/10.1093/nsr/nwaa148

Science China Press

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.