Exploring the frontier of ultra-small electronics

August 22, 2001

ITHACA, N.Y. -- Two groups of Cornell University researchers have been awarded U.S. defense agency contracts aimed at exploring a new generation of electronics technology at the molecular and nanoscale levels. The goals of the two programs are to investigate the possibility of developing new devices that ultimately could lead to huge increases in data storage and processing speed.

At the molecular level, George Malliaras, assistant professor of materials science and engineering, has been awarded a four-year, $400,000 contract by the Defense Advanced Research Projects Agency (DARPA), the central research and development organization of the U.S. Department of Defense. His research into understanding how to make molecules work like switches is part of a larger multi-disciplinary DARPA program, with the goal of demonstrating the feasibility of building functional molecular electronic devices. Also involved in this larger effort are the Naval Research Laboratory, the Air Force Research Laboratory, the University of North Texas and Scripps Research Institute.

DARPA's hope, according to Malliaras, is to develop molecular electronics devices that would leapfrog current silicon chip technology by increasing the number of transistors on a chip to the hundreds of millions. A Pentium II processor, one of the densest chips in use today, contains 7.5 million transistors.

Malliaras's project, which is Cornell's Þrst entry into molecular electronics research, is to investigate the electrical properties of individual molecules. To do this, he will build test structures that will contain a very small number of molecules between two metal electrodes. The measurements will take place at a probe station integrated with a cryostat and electrical characterization equipment that can measure down to 400 ato-Amperes (aA), an incredibly small measure of current. One aA is about 5 electrons a second flowing through the molecules. The cryostat will keep the molecules at temperatures as low as 4 degrees Kelvin (minus 452 degrees Fahrenheit).From these measurements, says Malliaras, "we can expect to extrapolate to a single molecule." The experiments will be complemented with a theoretical effort, to be undertaken in collaboration with David Dunlap of the University of New Mexico.

In theory, molecular electronics research could lead to circuits in which each element of a system, such as a transistor, diode or conductor, would be replaced by an individual molecule. Such molecular microchips, Malliaras says, could provide greatly improved computing speed and immense storage with a minimum of power demands, leading to such applications as a camera that could store millions of pictures or a watch with the computing power of a desktop PC. However, Malliaras believes that molecular electronics "is a fairly long shot" that could take a decade or more to develop.

At the nano scale (a nanometer is one billionth of a meter, or equal to the diameter of three silicon atoms), Robert Buhrman, professor of applied and engineering physics at Cornell, together with Dan Ralph, associate professor of physics, and colleagues at four other universities have been awarded a contract by the U.S. Army Multidisciplinary University Research Initiative (MURI) to study and exploit the spin property of electrons, which can be investigated through measurements of the magnetic-field dependent transport properties of electronic nanostructures.

The contract, which is for nearly $3 million over three years, will fund the work of Buhrman and Ralph at Cornell, David Awschalom at the University of California-Santa Barbara, Michael Flatte at the University of Iowa, Michael Roukes at the California Institute of Technology, and Ali Yazdani at the University of Illinois at Urbana-Champaign.

At the heart of the study of spin manipulation and spin interactions, says Buhrman, is the future hope of using wave function and spin instead of, or in addition to, electric charge to maintain and process stored information, a technology called quantum manipulation. (Spin, which can be in one of two states, is an intrinsic property of electrons and is part of the angular momentum of the particle.)

The MURI contract grew, in part, out of the demonstration by Buhrman and Ralph of a new way to write information on magnetic material on devices measuring between 10 and 100 nanometers in width. The devices could lead to new computer memory chips with very high data storage capacity. "The basic idea of this research is to develop techniques for the measurement of phenomena in electronic solid state systems that depend on spin, to learn how to control these phenomena and then to figure out ways to manipulate, store and process information using spin-based effects," Buhrman says.

"Magnetics and spin have the possibility of replacing silicon memory with magnetic memory integrated onto a silicon chip," he says. "Beyond that, magnetics and spin phenomena have the possibility of implementing quantum computing, an extremely long range and challenging program." Related World Wide Web sites: The following sites provide additional information on this news release. Some might not be part of the Cornell University community, and Cornell has no control over their content or availability. The Malliaras research group: http://www.ccmr.cornell.edu/~george/home.htm

Robert A. Buhrman: http://www.aep.cornell.edu/FFR/Faculty/Buhrman.html

Defense Advanced Research Projects Agency: http://www.darpa.mil/
-end-


Cornell University

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.