National Maglab achieves new world record with strongest resistive magnet

August 22, 2017

TALLAHASSEE, Fla. -- While the rest of the country watched the solar eclipse Monday, engineers at the Florida State University-headquartered National MagLab pulled off an eclipse of a different sort. Not to be outdone by celestial events, they set a new world record that blotted out the previous one by about 8 percent -- a sizable leap in magnet technology terms.

The new instrument reached 41.4 teslas (a unit of magnetic field strength) at 1:10 p.m. on Aug. 21, the culmination of two and a half intense years of design and development. In so doing, the lab reclaimed the record for the world's strongest resistive magnet, which it had held for 19 years up until 2014. The feat brings the lab's current tally of world records to 16.

The effort has been known in-house as Project 11, a reference to the 1984 mockumentary "This Is Spinal Tap" about a fictional rock group. In one scene, a guitarist shows off his unique amplifier, which has a top setting of 11 -- one notch higher than the standard 10.

That extra oomph allowed the lab's new magnet, fueled by 32 megawatts of DC (direct current) power, to leapfrog over the previous record-holders, a 38.5-tesla resistive magnet in Hefei, China, and a 37.5-tesla resistive magnet in Nijmegen, the Netherlands.

More importantly, the new instrument answers the call of physicists for stronger resistive magnets -- also called DC magnets -- in order to observe new phenomena in the materials they are studying.

"Resistive magnets are the bread and butter of our DC Field Facility, and the demand of scientists sometimes exceeds supply," said MagLab Director Greg Boebinger. "With the Project 11 magnet, we asked our engineers to 'turn it up a notch' and see what they could accomplish. This new brute delivers and will enable scientists to make discoveries that lead to better materials and technologies and deepen our understanding of how our world works."

The MagLab's magnet fleet includes different kinds of instruments: resistive magnets, made of copper and silver, like the Project 11 magnet; superconducting magnets, which require pricey materials; and hybrid magnets, a combination of both designs. The lab's 45-tesla magnet, the world's strongest continuous-field magnet, is a hybrid instrument and one of the lab's most sought-after tools.

The new 41.4-tesla magnet is easier for scientists to use than a hybrid and gives them more flexibility to adjust the field and polarity during experiments. The new system will be made available to visiting scientists in the coming months, joining a fleet that features a pair of 35-tesla instruments that, until this week, had been the lab's strongest resistive magnets.

Although the lab's newest magnet works on the same principles as all resistive magnets, it is no run-of-the-mill machine. Lab engineers, drawing on years of experience designing and developing the lab's other unique magnets, introduced improvements to maximize the electrical current density that helped catapult them to the new world record. At the same time, they kept costs down by repurposing parts from retired magnets.

"This larger magnet allows us to use 50 percent more coils," said veteran magnet designer Jack Toth, who oversaw a team of dozens of engineers, technicians and support staff on the project. "That enabled power to be distributed more efficiently within the magnet and reach a new record with the same materials."

Three years ago, other labs reached higher fields by building magnets four to five times larger than those at the MagLab, said Mark Bird, director of the lab's Magnet Science and Technology division. "This new magnet levels the playing field in size," he said, "but our superior technology allows us to reach '11.'"

Although MagLab staffers are proud to reclaim their long-held record, the deeper motivation is to enable exciting new science.

"It's about providing the scientific community access to high fields," said Tim Murphy, director of the DC Field Facility, which houses the new magnet. "That's why we're here."
-end-


Florida State University

Related Magnet Articles from Brightsurf:

New shortcut enables faster creation of spin pattern in magnet
Physicists have discovered a much faster approach to create a pattern of spins in a magnet.

Princeton scientists discover a topological magnet that exhibits exotic quantum effects
An international team led by researchers at Princeton University has uncovered a new class of magnet that exhibits novel quantum effects that extend to room temperature.

Hope for a new permanent magnet that's cheap and sustainable
Scientists have made a breakthrough in the search for a new, sustainable permanent magnet.

The magnet that didn't exist
In 1966, Japanese physicist Yosuke Nagaoka predicted the existence of a rather striking phenomenon: Nagaoka's ferromagnetism.

Magnet-controlled bioelectronic implant could relieve pain
A Rice University electrical and computer engineer has introduced the first neural implant that can be programmed and charged remotely with a magnetic field.

Fermilab achieves world-record field strength for accelerator magnet
Scientists at the Department of Energy's Fermilab have announced that they achieved the highest magnetic field strength ever recorded for an accelerator steering magnet, setting a world record of 14.1 teslas, with the magnet cooled to 4.5 kelvins or minus 450 degrees Fahrenheit.

Deep magnet stimulation shown to improve symptoms of obsessive compulsive disorder
Researchers have found that focusing powerful non-invasive magnet stimulation on a specific brain area can improve the symptoms of Obsessive Compulsive Disorder (OCD).

A new 2D magnet draws future devices closer
EPFL scientists have discovered a new type of 2D magnetic material that can be integrated into spintronic devices.

A quantum magnet with a topological twist
Researchers probed a special kind of magnet containing atoms arranged in a pattern called a kagome lattice, which takes its name from a Japanese basket.

Scientists discover new type of magnet
A team of scientists has discovered the first robust example of a new type of magnet -- one that holds promise for enhancing the performance of data storage technologies.

Read More: Magnet News and Magnet Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.