Nav: Home

Newly identified structure in lymph nodes was 'hiding in plain sight'

August 22, 2018

For the first time in decades, researchers have identified a new 'micro-organ' within the immune system - and they say it's an important step towards understanding how to make better vaccines.

In a study published this week in Nature Communications, scientists at Australia's Garvan Institute of Medical Research have identified where the immune system 'remembers' past infections and vaccinations - and where immune cells gather to mount a rapid response against an infection the body has seen before.

The structure was only discovered when the researchers 'made movies' of the immune system in action, using sophisticated high resolution 3D microscopy in living animals. Jam-packed with immune cells of many kinds, the structure is strategically positioned to detect infection early, making it a one-stop shop for fighting a 'remembered' infection - fast.

We have known for millennia that people exposed to an infection are often protected from getting the same infection again - ever since the Plague of Athens in 430 BC, where plague survivors were noted to have developed immunity against reinfection. Yet, major questions remain about how the body can fight back fast when it encounters an infection that it has been previously exposed to (through a vaccine or through an earlier infection).

A new structure that appears when it's needed

The researchers reveal the existence of thin, flattened structures extending over the surface of lymph nodes in mice. These dynamic structures are not always present: instead, they appear only when needed to fight an infection against which the animal has previously been exposed.

Crucially, researchers also saw the structures - which they have named SPFs (or 'subcapsular proliferative foci') - inside sections of lymph nodes from patients, suggesting that they help fight reinfection in people as well as in mice.

Using sophisticated 'two-photon' in vivo microscopy, the researchers could see that several classes of immune cells gathered together in SPFs. Memory B cells, which carry information about how best to attack the infection, clustered there. So did other cell types that act as helpers.

Importantly, the researchers could also see that memory B cells were changing into infection-fighting plasma cells. This is a key step in the fight against infection, because plasma cells make antibodies to recognise and fend off the invader and protect the body from disease.

"It was exciting to see the memory B cells being activated and clustering in this new structure that had never been seen before," says Garvan's Dr Imogen Moran, the first author on the new study. "We could see them moving around, interacting with all these other immune cells and turning into plasma cells before our eyes."

A need for speed

A/Prof Tri Phan (who led the research) says the SPF structures are perfectly placed to fight infection fast - so they can stop disease in its tracks before it takes hold.

"When you're fighting bacteria that can double in number every 20 to 30 minutes, every moment matters. To put it bluntly, if your immune system takes too long to assemble the tools to fight the infection, you die," he says.

"This is why vaccines are so important. Vaccination trains the immune system, so that it can make antibodies very rapidly when an infection reappears. Until now we didn't know how and where this happened.

"Now, we've shown that memory B cells rapidly turn into large numbers of plasma cells in the SPF. The SPF is located strategically where bacteria would re-enter the body and it has all the ingredients assembled in one place to make antibodies - so it's remarkably well engineered to fight reinfection fast."

Hiding in plain sight

The researchers say no one had seen the structures before because traditional microscopy approaches look at thin 2D sections of tissue that been chemically 'fixed' to provide a snapshot in time. The SPF is thin, and it comes and goes: these are both attributes that make it hard to detect using a conventional approach.

"It was only when we did two-photon microscopy - which lets us look in three dimensions at immune cells moving in a living animal - that we were able to see these SPF structures forming," says Dr Moran.

"So this is a structure that's been there all along, but no one's actually seen it yet, because they haven't had the right tools. It's a remarkable reminder that there are still mysteries hidden within the body - even though we scientists have been looking at the body's tissues through the microscope for over 300 years," says A/Prof Phan.

Hope for better vaccines

A/Prof Phan says the new discovery is an important step towards understanding how to make better vaccines.

"Up until now we have focussed on making vaccines that can generate memory B cells," he says. "Our finding of this new structure suggests that we should now also focus on understanding how those memory B cells are reactivated to make plasma cells, so that we can make this process more efficient."
-end-
Support for this work

The study was made possible by generous support from the NHMRC, the Garvan Research Foundation, and Mr and Mrs Peter and Val Duncan.

Media enquiries:

Dr Meredith Ross (Garvan) - m.ross@garvan.org.au - +61 (0) 439 873 258

Garvan Institute of Medical Research

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
The immune system's fountain of youth
Helping the immune system clear away old cells in aging mice helped restore youthful characteristics.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.