Nav: Home

Fast visible-UV light nanobelt photodetector

August 22, 2018

Compared with traditional thin-film photodetectors, one-dimensional nanostructures have larger surface-to-volume ratio, smaller size and higher carrier mobility, and thus tend to exhibit higher sensitivity and larger internal gain, which makes them promising candidates in practical applications such as optical communication, imaging and single photon detecting. As a representative II-VI semiconductor, CdS is a promising material for visible-UV light detection. However, for pure NWs/NBs based photodetectors, fast photoresponse speed and high sensitivity cannot be achieved simultaneously because of the surface reaction.

Recently, group of Qing Yang in Zhejiang University demonstrates a CdS-CdSxTe1-x-CdTe core-shell nanobelt photodetector, which possesses both high sensitivity and fast speed. The CdS-CdSxTe1-x-CdTe nanobelts were fabricated by introducing CdTe in the growth of CdS nanobelt. Because of the special growth condition, ternary crystal CdSxTe1-x alloy layers was formed between CdS and CdTe layers, thus CdS-CdSxTe1-x-CdTe core-shell structure was obtained. The fastest response time of this photodetector was demonstrated to be 11us, which is the fastest nanobelt photodetector based on CdS. The improvement of the response speed is ascribed to the forming of heterojunction among CdS, CdSxTe1-x and CdTe layers, which suppresses the surface reaction. In addition, the detection light spectrum has covered a wide range from 355 to 785 nm. Compared with pure CdS or CdTe nanostructure-based photodetectors, the detection spectrum of this photodetector is much extended, covering the whole visible spectrum. The responsivity and 3 dB bandwidth of the nanobelt photodetector reaches up to 1520 A/W and 22.9 KHz, respectively. Considering the simple fabrication process and the high performance in responsivity, response speed and detection spectrum, the CdS-CdSxTe1-x-CdTe NB photodetectors will find wide applications in optoelectronic nano devices such as optical communications, sensing and imaging.
-end-
See the article:

Tang M, Xu P, Wen Z, et al. Fast response CdS-CdSxTe1-x-CdTe core-shell nanobelt photodetector. Sci. Bull. (2018) https://doi.org/10.1016/j.scib.2018.08.003
https://www.sciencedirect.com/science/article/pii/S2095927318303785

Science China Press

Related Imaging Articles:

4D imaging with liquid crystal microlenses
Most images captured by a camera lens are flat and two dimensional.
Protein imaging at the speed of life
A team of physicists from the University of Wisconsin-Milwaukee have completed the first molecular movie of the ultrafast movement of proteins at the European XFEL facility.
Use of medical imaging
This observational study looked at patterns of use for computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and nuclear medicine imaging in the United States and in Ontario, Canada, from 2000 to 2016.
Two-in-one contrast agent for medical imaging
Magnetic resonance imaging (MRI) visualizes internal body structures, often with the help of contrast agents to enhance sensitivity.
Medical imaging rates during pregnancy
Researchers looked at rates of medical imaging (CT, MRI, conventional x-rays, angiography, fluoroscopy and nuclear medicine) during pregnancy in this observational study that included nearly 3.5 million pregnant women in the United States and Canada from 1996 to 2016.
Quality improvement in cardiovascular imaging
In the current issue of Cardiovascular Innovations and Applications volume 4, issue 1, pp.
Making digital tissue imaging better
A low-tech problem troubles the high-tech world of digital pathology imaging: There are no reliable standards for the quality of digitized tissue slides comprising the source material for computers reading and analyzing vast numbers of images.
Diattenuation imaging -- a promising imaging technique for brain research
A new imaging method provides structural information about brain tissue that was previously difficult to access.
Fingermark imaging for drug detection
In a paper to be published in the forthcoming issue in NANO, researchers from Zhejiang have uncovered a novel method of using nanocarrier-based biological fluorescent probes for detecting amphetamine and ketamine in latent fingermark, in a bid to combat drug abuse.
Whole-brain imaging of mice during behavior
In a study published in Neuron, Emilie Macé from Botond Roska's group and collaborators demonstrate how functional ultrasound imaging can yield high-resolution, brain-wide activity maps of mice for specific behaviors.
More Imaging News and Imaging Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab