Nav: Home

Excited atoms throw light on anti-hydrogen research

August 22, 2018

Swansea University scientists working at CERN have published a study detailing a breakthrough in antihydrogen research.

The scientists were working as part of the ALPHA collaboration which is made up of researchers and groups from over a dozen institutions from all over the world, with the UK contingent led by Swansea University's Professor Mike Charlton.

The research, funded by the EPSRC, was obtained using apparatus at the Antiproton Decelerator facility at CERN, and has been published in the Nature journal.

The Experiment:

The ALPHA team experiment shows how the scientists improved efficiency in the synthesis of antihydrogen, and for the first time succeeded in accumulating the anti-atoms, which has allowed for greater scope in their experimentation.

Professor Charlton said: "When an excited atom relaxes, it emits light of a characteristic colour, the yellow colour of sodium street lights is an everyday example of this. When the atom is hydrogen, which is a single electron and a single proton, and the excited electron decays to the lowest energy state from a higher one, the discrete series of ultraviolet light emitted forms the Lyman Series, which is named after Theodore Lyman who first observed this over 100 years ago.

"The presence of these discrete lines helped to establish the theory of quantum mechanics which governs the world at an atomic level and is one of the corner stones of modern Physics.

"The Lyman-alpha line is of fundamental importance in physics and astronomy. For example, observations in astronomy on how the line from distant emitters is shifted to longer wavelengths (known as the redshift), gives us information on how the universe evolves, and allows testing models which predict its future"

This experiment is the first time the Lyman-alpha transition - when the hydrogen electron transitions between the so-called 1S and 2P state, emitting or absorbing UV light of 121.6 nm wavelength - has been observed in anti-hydrogen. Antihydrogen is the antimatter counterpart to hydrogen, and is comprised of a single anti-proton and a single anti-electron with the latter particle also known as a positron.

Excited Atoms

For this experiment, the physicists accumulated about 500 antihydrogen atoms in the trap. If they did nothing, they could hold these atoms for many, many, hours without loss. However, by illuminating the trapped atoms with various colours of UV light, the team could drive the Lyman-alpha transition and excite the antihydrogen atoms.

These excited atoms are no longer trapped within the apparatus and, being comprised of antimatter, promptly annihilate with the surrounding matter of the equipment and are detected.

This observation is significant as it is yet another test of a property of antihydrogen that is in good agreement with that of hydrogen. It is also a key step towards the production of ultra-cold antihydrogen atoms, which will greatly improve the ability to control, manipulate and perform further precision studies on the anti-atom.

Professor Charlton said: "This represents another landmark advance in atomic physics, which should open the way to manipulation of the kinetic energies of the trapped anti-atoms

"While studies have continued at the Antiproton Decelerator facility at CERN, further refining these measurements and using the techniques to improve our understanding of the antihydrogen through spectroscopy, the ALPHA team will be modifying the apparatus in order to study the effect of Earth's gravity on the anti-atom. The next few months will be an exciting time for all concerned."

A positron beam line - it transports the positrons from the source into the main antihydrogen trap


When reporting this story, please use Swansea University hyperlinks.
  • Swansea University is a world-class, research-led, dual campus university offering a first class student experience and has one of the best employability rates of graduates in the UK.
  • The University has the highest possible rating for teaching - the Gold rating in the Teaching Excellence Framework (TEF) in 2018 and was commended for its high proportions of students achieving consistently outstanding outcomes.
  • The Physics Department at Swansea University is ranked 13th in the UK and best in Wales in the Guardian University Guide, 2019. Based at our Singleton Park Campus, our students benefit from a £4.2M investment in lab facilities and social learning spaces. Our students voted us as the 2nd best Physics department in the UK in the 2018 National Student Survey, with a satisfaction score of 97%. Students are taught by world-class academics, who are active in research areas such as the trapping of anti-matter. The Department has close links with CERN and there are opportunities for students to visit and take part in CERN-based projects and research activity.
  • Swansea climbed 14 places to 31st in the Guardian University Guide 2019, making us Wales' top ranked university, with one of the best success rates of graduates gaining employment in the UK and the same overall satisfaction level as the Number 1 ranked university.
  • The 2014 Research Excellence Framework (REF) 2014 results saw Swansea make the 'biggest leap among research-intensive institutions' in the UK (Times Higher Education, December 2014) and achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK.
  • The University is in the top 300 best universities in the world, ranked in the 251-300 group in The Times Higher Education World University rankings 2018. Swansea University now has 23 main partners, awarding joint degrees and post-graduate qualifications.
  • The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students.
  • The University has ambitious expansion plans as it moves towards its centenary in 2020 and aims to continue to extend its global reach and realise its domestic and international potential.

Swansea University is a registered charity. No.1138342. Visit

For more information, please contact Kevin Sullivan, Swansea University Public Relations Office.Tel: 01792 513245, or email:

Follow us on Twitter:

Find us on Facebook:

Swansea University

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".