Nav: Home

Combination immunotherapy shrinks melanoma brain metastases

August 22, 2018

Combination immunotherapy shrank melanoma that has spread to the brain in more than half of the patients in a clinical trial reported in the New England Journal of Medicine led by an investigator at The University of Texas MD Anderson Cancer Center.

Of 94 patients in the single-arm study combining checkpoint inhibitors ipilimumab and nivolumab, at a minimum follow-up of nine months and a median of 14 months, 24 (26 percent) had a complete response, 28 (30 percent) had a partial response and 2 (2 percent) had stable disease.

"As treatment for stage 4 melanoma has improved greatly in recent years, our patients with metastases to the brain have remained the group most in need, they've had the worst prognosis, so we are very excited about these results," said the national study's principal investigator and lead author Hussein Tawbi, M.D., Ph.D., associate professor of Melanoma Medical Oncology at MD Anderson.

"This practice-changing study proved that you can start with immunotherapy first with these patients, tackling both brain and extracranial disease at the same time," Tawbi said. "And it opens up new opportunities for development of systemic therapies for metastatic melanoma."

About 40 percent of patients with stage 4 melanoma have brain metastases at diagnosis, and 75 percent eventually develop the condition, which previously was so intractable to treatment that these patients were routinely excluded from clinical trials of new drugs. Median overall survival of patients with brain metastases has been four to five months.

Durable responses

At nine months, 59.5 percent of patients with brain tumors had not progressed.

"The absence of progression for that long with brain metastases is huge," Tawbi said. "Historically, the overall one-year survival rate for patients with brain metastases is less than 20 percent, with the immunotherapy combination in this study, it's 82 percent."

Tawbi and colleagues note in the paper that the immunotherapy combination results should cause reconsideration of the current standard of care for brain metastases: surgery or targeted radiation for a small number of tumors and whole-brain radiation for more extensive disease.

Stereotactic radiation is quite effective when used to treat small metastases before immunotherapy can begin, Tawbi says, with a four-week wait between treatments. What often occurs, he says, is the original metastases are destroyed but others arise during the four weeks, further delaying systemic treatment.

""We've shown you don't have to wait for radiation, you can initiate immunotherapy early for all patients and expect the tumors in the brain to respond as well as those outside the brain," he said. "Current efforts focus on adding radiation at the right time for lesions that have not responded or progress. Neurosurgeons, radiation oncologists and medical oncologists will continue to work together to recommend the best initial approach for our patients and the best timing for subsequent treatments as needed."

For tumors outside the brain, 56.4 percent of study patients had their tumors either shrink or remain stable. Nine-month progression-free survival was 56.6 percent. Median progression-free and overall survival have not been reached.

All patients were treated with ipilimumab, which blocks the CTLA-4 checkpoint on T cells, in combination with nivolumab, which inhibits activation of the PD1 checkpoint. Both checkpoints otherwise shut down T cells and thus block the anti-tumor immune response.

Brain-related side effects

Patients in the trial had untreated brain metastases that also had not caused neurological symptoms, such as impaired thinking, vision or memory. A second arm added to the trial to enroll 20 patients who had neurological symptoms had not been open long enough to analyze the results.

Historically, one reason patients with brain metastases had been excluded from clinical trials is that the blood-brain barrier, tight vascular construction, prevents drugs from reaching tumors. Since immunotherapy empowers T cells rather than treating tumors directly, the immune system cells can defeat the barrier, but there were concerns about immune-related side effects.

"We were quite concerned going into the study about immunotherapy causing inflammation and swelling in the brain, so this was closely monitored," Tawbi said. "In the end, only 5 percent of patients had swelling in the brain."

Overall, 34 patients (36.2 percent) had some type of central nervous system side effect, with headache being the most prominent, experienced by 21 patients. Seven of the 34 patients had the more serious grade 3 or 4 toxicities - three headaches, two with brain swelling, one with a brain hemorrhage and one with syncope (a loss of consciousness).

The side effect profile was otherwise similar to those caused by the combination in patients without brain metastases. Fifty-two patients (55 percent) had a grade 3 or 4 side effect, with 19 patients (20 percent) having to leave the trial. One patient died of treatment-related inflammation of the heart.

The most common grade 3 or 4 side effects were increased alanine aminotransferase in 15 patients and increased aspartate aminotransferase in 16 patients, both signs of potential liver damage.

Previous small studies showed that either ipilimumab or anti-PD1 drugs alone had response rates of around 20 percent in brain metastases. A smaller Australian study showed a 46 percent response rate for the combination.

An earlier clinical trial of combination targeted therapies, also led by MD Anderson investigators, showed high response rates for brain metastases but at shorter durations, with median progression-free survival of 5.8 months.

"Including these patients in clinical trials will accelerate progress for this patient population," Tawbi said.

The clinical trial was sponsored by Bristol-Myers Squibb, which developed and markets both drugs.
-end-
Tawbi reports receiving past research funding for MD Anderson and consulting fees from Bristol-Myers. Potential conflicts of interest for all authors are listed at the New England Journal of Medicine web site.

Co-authors with Tawbi are: Peter Forsyth, M.D., and Nikhil Khushalani, M.D., of Moffitt Cancer Center and Research Institute, Tampa; Alain Algazi, M.D., University of California-San Francisco; Omid Hamid, M.D., of The Angeles Clinic and Research Institute, Los Angeles; F. Stephen Hodi, M.D., and David Reardon, M.D., of Dana-Farber Cancer Institute, Boston; Stergios Moschos, M.D., University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, N.C.; Karl Lewis, M.D., of University of Colorado Comprehensive Cancer Center, Aurora, Colo.; Christopher Lao, M.D., of the University of Michigan, Ann Arbor, Mich.; Michael Postow, M.D., of Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York; Michael Atkins, M.D., of Georgetown-Lombardi Comprehensive Cancer Center, Washington D.C.; Marc Ernstoff, M.D., and Igor Puzanov, M.D., of Roswell Park Cancer Institute, Buffalo, N.Y.; Ragini Kudchadkar, M.D., of Winship Cancer Institute of Emory University, Atlanta; Reena Thomas, M.D., Ph.D., of Stanford University Hospital, Palo Alto, Calif.; Ahmad Tarhini, M.D., Ph.D., of University of Pittsburgh Medical Center, Pittsburgh; Anna Pavlick, D.O., of New York University, Lake Success, N.Y.; Joel Jiang, Ph.D., Alexandre Avila, M.D., Ph.D., Sheena Demelo, M.D., of Bristol-Myers Squibb, Princeton, N.J.; and Kim Margolin, M.D., City of Hope, Duarte, Calif.

University of Texas M. D. Anderson Cancer Center

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...