Nav: Home

Quantum gravity's tangled time

August 22, 2019

According to general relativity, the presence of a massive object slows down the flow of time. This means that a clock placed close to a massive object will run slower as compared to an identical one that is further away.

However, the rules of quantum theory allow for any object to be prepared in a superposition state. A superposition state of two locations is different to placing an object in one or the other location randomly - it is another way for an object to exist, allowed by the laws of quantum physics.

One of the open questions in physics is: What happens when an object massive enough to influence the flow of time is placed in a quantum superposition state?

This is a controversial topic: some physicists claim that such scenarios are fundamentally impossible - some new mechanism must block the superposition from forming in the first place - while others develop entire theories based on the assumption that this is possible.

"We started by tackling a question: what would a clock measure if it was influenced by a massive object in a quantum superposition state?" explains Magdalena Zych from the University of Queensland.

The scientists were expecting to face the roadblocks making the scenario impossible, but surprisingly, using standard textbook physics they were able to exactly describe what happens.

They so discovered that when a massive object is placed in a quantum superposition in the vicinity of a set of clocks, their time order can become genuinely quantum, defying any classical description.

Caslav Brukner, coauthor from the University of Vienna and the Austrian Academy of Sciences added that the regime where quantum time order could arise is quite remote from our everyday experience, "but the most important insight from our work is that quantum time order is at all possible, and that it results in new physical effects."

To illustrate what happens, imagine a pair of starships training for a mission. They are asked to fire at each other at a specified time, and immediately start their engines in order to dodge each other's attack. If either of the ships fires too early, it will destroy the other, and this establishes an unmistakable time order between the firing events. If a powerful agent could place a sufficiently massive object, say a planet, closer to one ship it would slow down its counting of time. As a result, the ship farther away from the mass will fire too early for the first one to escape.

The laws of quantum physics and gravity predict that by manipulating a quantum superposition state of the planet, the ships can end up in a superposition of either of them being destroyed. Such a superposition state, involving two systems, is called entangled. The new work shows that the temporal order among events can exhibit superposition and entanglement - genuinely quantum features of particular importance for testing quantum theory against alternatives. The result can now be used as a theoretical testing ground for frameworks for quantum gravity, and thus help to move forward in formulating the correct theory of quantum gravity.

The study will also be relevant for future quantum technologies. Quantum computers that exploit quantum order of performing operations might beat devices that operate using only fixed sequences. Practical implementations of quantum temporal order do not require extreme conditions--such as planets in superposition--and can be simulated without the use of gravity. The discovery of quantum properties of time can lead to better quantum devices in the upcoming era of quantum computers.
-end-
Publication in Nature Communications:

"Bell's theorem for temporal order" M.Zych, F.Costa, I.Pikovski, and ?. Brukner, Nature Communications volume 10, Article number: 3772 (2019)

https://www.nature.com/articles/s41467-019-11579-x

University of Vienna

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
More Science News and Science Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...