Computer model could help test new sickle cell drugs

August 22, 2019

PROVIDENCE, R.I. [Brown University] -- A team of Brown University researchers has developed a new computer model that simulates the way red blood cells become misshapen by sickle cell disease. The model, described in a paper published in Science Advances, could be useful in the preclinical evaluation of drugs aimed at preventing the sickling process.

"There are currently only two drugs approved by the FDA for treating sickle cell disease, and they don't work for everyone," said Lu Lu, a Ph.D. student in the Division of Applied Mathematics at Brown and the study's co-lead author. "We wanted to build a model that considers the entire sickling process and could be used to quickly and inexpensively pre-screen new drug candidates."

Sickle cell disease is a genetic disorder that affects millions of people worldwide. The disorder causes red blood cells, which are normally soft and round, to become stiff, sticky and sickle-shaped (a bit like a crescent moon). The irregularly shaped cells get stuck in blood vessels, causing pain, swelling, strokes and other complications.

At the cellular level, sickle cell disease affects hemoglobin, a protein in red blood cells responsible for transporting oxygen. When oxygen-deprived, sickle cell hemoglobin clumps together inside the cell. The clumps then form long polymer fibers that push against the cell wall, stiffening the cells and forcing them out of shape.

George Karniadakis, a professor of applied mathematics at Brown and senior author of the new research, has worked for years to better understand the disorder. Most recently, he's worked with Lu and He Li, a research professor at Brown, to create detailed biophysical models of each stage of the sickling process, including a model of red blood cell function called OpenRBC and a supercomputer model of sickle cell fiber formation.

This new model combines and simplifies the previous models to create a single kinetic model of the entire sickling process. Using information gleaned from the detailed supercomputer models, the researchers were able to build a simplified version that captures all the important dynamics of the sickling process, yet can be run on a laptop.

To validate the model, the researchers showed that it could reproduce the outcomes of prior experiments in the lab and in people.

Because the dynamics of the sickling process can vary depending upon where in the body it's happening, researchers designed the model to simulate sickling process in different organs. For example, because oxygen plays a key role in the process, sickling unfolds very differently in oxygen-rich areas like the lungs compared to more oxygen-poor areas like the kidneys. The model allows users to input parameters specific to the organ they're hoping to simulate. That same flexibility also enables to model to be run for individual patients who may have more or less severe versions of the disorder.

To test the potential effectiveness of drugs, the model allows users to input the mode of action by which a drug is presumed to work, information is often gathered during preliminary lab studies. For example, if a drug is designed to boost the amount of healthy hemoglobin in red blood cells, that information can be used by the model to generate the effect on a large population of patient-specific or organ-specific red blood cells.

"Sometimes a drug can be designed to work on one parameter, but ends up having a different effects on other parameters," Karniadakis said. "The model can tell if those effects are synergistic or whether they may negate each other. So the model can give us an idea of the overall effect of the drug."

The researchers are hopeful the model could be useful in identifying promising drug candidates.

"Clinical drug trials are very expensive and the vast majority of them are unsuccessful," Karniadakis said. "The hope here is that we can do in silico trials to screen potential medications before proceeding to a clinical trial."
-end-
Other co-authors on the paper were Zhen Li, Xuejin Li and Peter Vekilov. The research was supported by the National Heart, Lung and Blood Institute (U01HL114476).

Brown University

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.